誘導電動機の速度センサレス制御法
～パラメータ同定機構によるすべり角周波数の推定～

野口 季彦（岐阜工業高等専門学校）、高橋 勝（長岡技術科学大学）

2. パラメータ同定機構によるすべり角周波数の推定 任意角周波数で回転するr座標において、誘導電動機の状態方程式を一次電流、一次磁束矢アームについて表すと次式のようにになる。

\[
\begin{align*}
\begin{bmatrix}
\dot{L}_{1r} \\
\dot{L}_{1i} \\
\dot{r}_{1r} \\
\dot{r}_{1i} \\
\end{bmatrix} &= \begin{bmatrix}
\frac{R_2}{L_{11}L_{1r}} & \frac{L_{22}}{L_{11}L_{1r}} & \frac{-L_{12}}{L_{11}L_{1r}} & \omega \\
\frac{-L_{12}}{L_{11}L_{1i}} & \frac{R_2}{L_{11}L_{1i}} & \frac{L_{22}}{L_{11}L_{1i}} & \omega \\
-R_1 & 0 & 0 & 0 \\
0 & -R_1 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
L_{1r} \\
L_{1i} \\
r_{1r} \\
r_{1i} \\
\end{bmatrix} + \begin{bmatrix}
\frac{1}{L_{11}} & 0 & 0 & 0 \\
0 & \frac{1}{L_{11}} & 0 & 0 \\
\frac{V_{1r}}{L_{1r}} & 0 & \frac{V_{1i}}{L_{1i}} & 0 \\
0 & \frac{V_{1i}}{L_{1i}} & 0 & \frac{V_{1r}}{L_{1r}} \\
\end{bmatrix} \begin{bmatrix}
\omega \\
r_{1r} \\
r_{1i} \\
r_{1i} \\
\end{bmatrix}
\end{align*}
\]

ここで、一次磁束矢アームの角周波数をωとしr軸と磁束ベクトルr_{1r}の方向を一致させると、$\omega = \omega_1, \omega_2 = \omega_1 - \omega_3, [\psi_{1r}, \psi_{1i}] = [\psi, 0]$とおく。磁束一定制御を仮定すると$r_{1r} = 1$一定であるから、以上の条件を(1)式へ代入すれば一次電流に関する簡単な状態方程式が得られる。

\[
\begin{align*}
\begin{bmatrix}
\dot{L}_{1r} \\
\dot{L}_{1i} \\
r_{1r} \\
r_{1i} \\
\end{bmatrix} &= \begin{bmatrix}
\frac{R_2}{L_{11}L_{1r}} & \omega \\
\omega & -\frac{R_2}{L_{11}L_{1i}} \\
-R_1 & 0 \\
0 & -R_1 \\
\end{bmatrix} \begin{bmatrix}
L_{1r} \\
L_{1i} \\
r_{1r} \\
r_{1i} \\
\end{bmatrix} + \begin{bmatrix}
\frac{1}{L_{11}} & 0 & 0 & 0 \\
0 & \frac{1}{L_{11}} & 0 & 0 \\
\frac{V_{1r}}{L_{1r}} & 0 & \frac{V_{1i}}{L_{1i}} & 0 \\
0 & \frac{V_{1i}}{L_{1i}} & 0 & \frac{V_{1r}}{L_{1r}} \\
\end{bmatrix} \begin{bmatrix}
\omega \\
r_{1r} \\
r_{1i} \\
r_{1i} \\
\end{bmatrix}
\end{align*}
\]

(2) 式の一次電流はω_1関数として直線的に変化するので、並列式MRAシステムに基づいてω_1を可調節パラメータとした同定機構を図1のように構成できる。

3. 制御システムの構成 同定機構で推定したωから回転速度の推定値$\dot{\omega}_\theta$は次式によって求められる。

\[
\dot{\omega}_\theta = \omega_1 - \omega_3
\]

なお速度センサレスによる実用的な速度制御範囲を考えると、静止したd κ座標における一次磁束矢アームを考えると、ψ_{1r}は一次電圧V_{1r}, V_{1i}と一次電流i_{1r}, i_{1i}と一次遅れ要素に比例して近似的に求められる。したがって、この1式と2式を用いて$\dot{\omega}_\theta$は(4)式で、図1の座標変換は(5)式で演算することができる。図2、図3に制御システムの構成とシミュレーション結果を示す。これより良好な制御特性が得られていることがわかる。

\[
\omega_1 = \frac{(V_{1s} - R_1i_{1s}) \psi_{1s} + (V_{1s} - R_1i_{1s}) \psi_{1s}}{\psi_{1s} + \psi_{1s} + i_{1s}}
\]

4. まとめ 本論文ではパラメータ同定機構に基づくすべり角周波数の推定法とそれを適用した新しい速度センサレス制御法を提案し、ディジタルシミュレーションによりその妥当性を確認した。

5. 参考文献 (1) 高橋、野口「瞬時すべり角周波数制御に基づく誘導電動機の新速度トルク制御法」 電学論B. vol.106. p.9 (61-1)
(2) 大森、宮下「速度センサレス瞬間時間ベクトル制御」産業研究会資料、1EA-90-33 (平2-10)

図1 すべり角周波数同定機構
図2 速度センサレス制御システム
図3 シミュレーション結果