瞬時電力に着目した
電源電圧センサレスPWMコンバータの力率1制御

富木 広明* 野口 季彦 近藤 正示 高橋 敏
（長岡技術科学大学）

1. はじめに
近年、インバータの普及にともない、その直流通電源として使用されるダイオード
整流回路の問題点が顕在化してきた。このダイオード整流回路は注入力率の低下や高
調波磁通を引き起こすため、高性能・高機能を要求する分野では自らPWMコンバータ
が用いられている。PWMコンバータは入力電流に含まれる高調波を低減できるうえ、
注入力率を1に制御することが容易である。さらに回生動作が可能であるため、
電動機駆動システムや系統連系太陽光発電
システムにも幅広く使用され、種々的制御
法が精力的に研究されている。
PWMコンバータの制御法としては、電流マイクループを構成して電源電圧と同期
した電流制御を行い、直流リンク電圧を管理する方式が一般的である。このためPWM
コンバータには通常、3種類のセンサが必要とされる。
(1) 電源電圧検出用センサ（トランス、フォトカプラ、アイソレーションアンプなど）
(2) 電流フィードバック用センサ（ホール
C Tなど）
(3) 直流リンク電圧フィードバック用センサ（アイソレーションアンプ、フォトカプラ
など）
これらのうち(2)と(3)は過電流保護や過電
圧保護機能を兼ねるためねむることはでき
ない。しかし、(1)の電圧センサはPWM
コンバータの構成を簡単化し信頼性を向上
させる観点から、センサレス化することが
望ましい。このような目的のもとに最近で
はコントローラ内部で電源電圧の実効値と
位相を推定し、注入力率を1に制御する手
法が提案されている(1)。
これに対し、本論文では従来のもとは
異なる電源電圧推定アルゴリズムを用いて、
PWMコンバータの総合注入力率を1に制
御する手法を提案する(2)。このアルゴリズ
ムはPWMコンバータのスイッチングモー
ドと系統電源の瞬時有効・無効電力に着目
し、電源電圧を推定するものであり、電源
電圧の瞬時値を対象とするため基本波だけ
でなく高調波も正確に推定することができ
る。本稿では以上の制御概念を展開すると
ともに、シュミュレーションと実験により提
案する手法の妥当性を検証した。その結果、
良好な制御特性を確認できたので以下に報
告する。

2. 瞬時電力に着目した電源電圧推定法
2.1 電源電圧推定法の原理
図1にPWMコンバータの主回路を示す。
ここで、\(v_a, v_b, v_c\)は三相電源の相電圧、
\(e_a, e_b, e_c\)は各相の線電流、\(V_L\)はPWMコンバータの直流リンク電圧を表している。
また\(L\)は系統連系リアクトル、\(C\)は直流平
滑コンデンサで、PWMコンバータの負荷
として抵抗\(R\)を考える。なお、PWMコンバータのスイッチング素子が上にオンした
場合は \(S_a, S_b, S_c \) を 1, 下にオフした場合は \(S_a, S_b, S_c \) を 0 と表現する。

図 1 の PWM コンバータにおいて系統電源側の瞬時相電力 \(s \) は次式で定義される。
\[
s = p + jq = v^* \tag{1}
\]
ここで \(p \) は瞬時有効電力、\(q \) は瞬時無効電力であり、それぞれ \(s \) の実数部と虚数部を構成している。また、\(v \) は系統電源の瞬時複素電圧ベクトル、\(i \) は瞬時複素電流ベクトルであり、これらは次式で定義される。
\[
v = v_a + jv_b = \frac{2}{\sqrt{3}} \left(v_a + v_be^{j\pi/3} + v_ce^{j4\pi/3} \right) \tag{2}
\]
\[
i = i_a + ji_b = \frac{2}{\sqrt{3}} \left(i_a + i_be^{j\pi/3} + i_ce^{j4\pi/3} \right) \tag{3}
\]
したがって、\(p \) と \(q \) を電源電圧および電流で表すと次のようになる。
\[
p = v_a i_a + v_b i_b + v_c i_c \tag{4}
\]
\[
q = \frac{1}{\sqrt{3}} \left[(v_b - v_c) i_a + (v_c - v_a) i_b + (v_a - v_b) i_c \right] \tag{5}
\]
すなわち、瞬時有効電力は電源電圧と電流の

<table>
<thead>
<tr>
<th>(S_a, S_b, S_c)</th>
<th>瞬時有効電力 (\dot{p})</th>
<th>瞬時無効電力 (\dot{q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0, 0</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) + V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) - V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>1, 1, 0</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) - V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) + V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>0, 1, 0</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) + V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) - V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>0, 1, 1</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) - V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) + V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>0, 0, 1</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) + V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) - V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>1, 0, 1</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) - V_{ac} i_a)</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) + V_{ae} (i_a - i_b) \right))</td>
</tr>
<tr>
<td>0, 0, 0</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right))</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) \right))</td>
</tr>
<tr>
<td>1, 1, 1</td>
<td>(\frac{L}{3} \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right))</td>
<td>(\frac{1}{\sqrt{3}} \left(3L \left(\frac{di_a}{dt} i_a - \frac{di_b}{dt} i_b \right) \right))</td>
</tr>
</tbody>
</table>
力の各演算式はスイッチングモード \(S_a, S_b, S_c \) に応じて 1 対 1 に対応しているため、それらの組み合せによって演算アルゴリズムを切り替えなければならない。なお、これらの演算式では機器パラメータとして \(I \) が必要とするため、瞬時有効・無効電力は推定値 \(\hat{p}, \hat{q} \) として表されている。

次に、以上の演算式に基づいて得られた \(\hat{p}, \hat{q} \) を用いて電源電圧の推定値 \(\hat{v}_a, \hat{v}_b, \hat{v}_c \) を求める。瞬時有効電力 \(p \) と瞬時無効電力 \(q \) は次式のように表されることもできる。

\[
\begin{bmatrix}
 p \\
 q \\
\end{bmatrix} =
\begin{bmatrix}
 i_a & i_b & i_c \\
 -i_b & i_a & 0 \\
\end{bmatrix}
\begin{bmatrix}
 v_a \\
 v_b \\
 v_c \\
\end{bmatrix}
\]

通常、PWMコンバータでは上式の電流行列は正則であるから、\(v_a, v_b, v_c \) について解くことができる。そこで表 1 で求められた \(\hat{p}, \hat{q} \) を代入し、さらに二相三相変換を施すと、(8)式のように電源電圧推定値 \(\hat{v}_a, \hat{v}_b, \hat{v}_c \) を得ることができる。

\[
\begin{bmatrix}
 \hat{v}_a \\
 \hat{v}_b \\
 \hat{v}_c \\
\end{bmatrix} =
\begin{bmatrix}
 i_a^2 & i_b^2 & i_c^2 \\
 -i_b^2 & i_a^2 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 \hat{p} \\
 \hat{q} \\
\end{bmatrix}
\]

以上の電源電圧推定法において対象とした変数はすべて瞬時値であるため、電源電圧の基本波だけでなく高調波も推定することができる。

2.2 各種PWMコンバータの電源電圧センサレス制御法

以上に述べた電源電圧推定法を用いることにより各種PWMコンバータにおいて電源電圧センサを用いない効率を 1 に制御することが可能となる。図 2 を図 4 にここて提案する電源電圧推定法を適用したPWMコンバータの回路構成を列挙する。図 2 は瞬時値比較形電流制御方式に基づくPWMコンバータに適用した場合である。従来は電圧センサで検出した電源電圧 \(v_a, v_b, v_c \) と直流リンク電圧制御ブートの操作量（PI制御器の出力） \(I^* \) を乗じることで線電流指令値 \(i_a^*, i_b^*, i_c^* \) を得ていた。図 2 ではこれに代わって電源電圧推定値 \(\hat{v}_a, \hat{v}_b, \hat{v}_c \) を用いることにセンサレス化を実現している。また、図 3 は三角波キャリア変調形電流制御方式に基づくPWMコンバータに適用した場合である。この場合も先程と同様に電源電圧を検出する代わりに電源電圧推定値を用いて線電流指令値を得ることができる。一方、図 4 は著者らが既に提案したPWMコンバータの有効・無効電力

図 2. 瞬時値比較形電流制御方式
図 3. 三角波キャリア変調形電流制御方式
瞬時値比較制御法①をセンサレス化した場合である。この方式は瞬時有効・無効電力
をフィードバックし、PWMコンバータのスイッチングによってそれらを直接的に制
御するものである。このとき必要となる瞬
時有効電力と瞬時無効電力の演算には先に
述べた推定値 \(\hat{p}_t, \hat{q}_t \) を利用し、電源電圧ペ
クトルの位相制御には \(\hat{v}_a, \hat{v}_b, \hat{v}_c \) を用いる
ことでセンサレス化が可能となる。この有
効・無効電力瞬時値比較制御法に今回提案
した電源電圧推定法を適用することによっ
て、中間変数である \(\hat{p}_t, \hat{q}_t \) を有効に活用す
ることができると期待できる。

以下の議論では、最も一般的な図3の構
成に基づいてシミュレーションと実験を行
い、その制御特性について検討する。

3. シミュレーションと実験による検証

3.1 シミュレーション結果

表2にシミュレーションで用いた主回路
のパラメータを示す。図5は連続時間系で
力率1制御を行った場合の定常特性を示し
ている。これより表1に基づく瞬時有効電
力 \(\hat{p}_t \) と瞬時無効電力 \(\hat{q}_t \) は良好に推定されて
おり、その結果、電源電圧推定値 \(\hat{v}_a \) は実際
とよく一致している。また、\(\hat{v}_a \) を基準にし
た電流制御によって力率1制御が実現され
ていることがわかる。次に直流リンク電圧
指令値 \(V_{d1}^* \) を300 [V]から320 [V]にステ
ップ的に変化させた場合の過渡応答を図6
に示す。このような瞬時電力の過渡的な変
化に対しても安定に電源電圧の推定が行わ
れており、力率1制御が実現されている。

以上は理想的な連続時間系でシステムを
構成した場合のシミュレーションであるが、
実際にはDSP等を用いて離散時間系で構
成するため、シミュレーションにおいても
一定の制御周期を考慮しなければならない。

図7は実際のシステムを念頭におき、制
御周期を15 [μs]、電流検出分解能を12 [bit] としたときの定常特性である。図5
と図7を比べると電源電圧推定値にスパイ
クノイズが周期的に現れていることがわか
る。しかし、このような状態においても力
率1制御が実現されており、安定した直流
リンク電圧制御が行われている。これは高
周波成分に対する電流制御系のループゲイ
ンが低下しているためである。なお、この
離散化にともなう推定誤差については後回
で検討する。

3.2 実験システムの構成

図8に実験システムの構成を示す。PW
Mコンバータの主回路は表2に示した素子

<table>
<thead>
<tr>
<th>表2 主回路のパラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>系統連系リアクトル</td>
</tr>
<tr>
<td>直流平滑コンデンサ</td>
</tr>
<tr>
<td>負荷抵抗</td>
</tr>
<tr>
<td>キャリア周波数</td>
</tr>
<tr>
<td>系統電源</td>
</tr>
<tr>
<td>直流リンク電圧指令値</td>
</tr>
</tbody>
</table>
をもった場合についてシミュレーションを行った。シミュレーションの条件は前述の通りであり、制御周期は15 [μs]，電流検出分解能は12 [bit] とした。図 18(a)はLが設定値に対して±20 [%] と大きい場合の定常特性である。各種推定値にはわずかな推定誤差が見られるが、大幅な制御特性の劣化には至らない。これに対して、Lが設定値よりも－20 [%] と小さい場合の定常特性を図 18(b)に示す。(a)と比較して各種推定値のリップルが増大し、それにともない線電流波形も歪む。以上のように正負いずれのパラメータスムッチに対しても、提案する方式は制御特性が不安定になっただけ大に劣化することはない。

(4.3) 電源高調波の影響

系続電源に第5次高調波が10 [%] 重畳している場合を想定し、電源電圧センサレス制御のシミュレーションを実施した。図 19 はその特性を示したもので、電源電圧V0とその推定値V0はよく一致し、線電流I0にも第5次高調波が見られる。このように電源電圧と線電流はほぼ相似波形となることから、総合力率の向上を期待できる。同様の条件で実験を行った結果を図 20 に示す。この場合もシミュレーションと同様に良好な推定特性と力率制御特性が得られた。

以上のように本稿で提案する推定法によれば、基本波力率だけでなく総合力率を改善することが実証された。

5. まとめ

本論文では電源電圧センサを用いることなくPWMコンバータの力を1に制御する方法を提案し、シミュレーションと実験により種々の制御特性を検証した。以下に
図5. 電源電圧センサレス制御時の
定常特性（シミュレーション）

で構成し、系統側の電流センサにはホール
CT、直流リンク電圧センサにはアイソレーショノンアンプを採用した。一方、P WM
回路を除いて、すべての制御回路はディジタルハードウェアで構成されている。前述
の推定演算はD S P (T M S 320 C 5 0) を用いて
行われており、内部ソフトウェアタイムを利用
して制御周期は15 [μs] 一定に保たれ
ている。

図9はD S P で処理する推定演算のフローチャートである。系統側の線電流やP WM
コンバータのスイッチングモードをサンプルした後、表1と(7)式、(8)式等の推定
演算に従い電源電圧推定値を求めてD／A
コンバータに出力する。以上の処理を
125 [μs] で実行し、残り25 [μs] は待機状
態とする。このように極めて高速なソフト
ウェア処理を実現するため、電流検出用の
A／Dコンバータも高サンプリングレート

図6. 電源電圧センサレス制御時の
過渡特性（シミュレーション）

図7. 離散時間系で実現した電源電圧セ
ンサレス制御特性（シミュレーション）

-107-
3.3 実験結果

図10と図11に以上の実験システムを用いてパルス率1制御を行った場合の電源相電圧V₀とその推定値\(\hat{V}_0 \)、線電流Iₓ、瞬時有効電力の推定値\(\hat{P} \)、瞬時無効電力の推定値\(\hat{Q} \)を示す。これより、相電圧と線電流は相等となっているため入力パルス率1に制御できていることがわかる。また、瞬時有効電力の推定値はほぼ一定となっているのに対し、瞬時無効電力の推定値は零である。電源相電圧推定値にはシミュレーションに見られたスパイク状の推定誤差が発生しているが、図11の瞬時有効電力と瞬時無効電力の推定値にすでに見られることから、これらの推定演算において何らかの問題が生じていると推測される。

次に直流リンク電圧の指令値\(V_{dc}^* \)をステップ的に変化させた場合の各波形図を図12に示す。この図は上から電源相電圧V₀、線電流Iₓ、直流リンク電圧制御ループの操作量（電源極幅指令値）\(I^* \)、直流リンク電圧\(V_{dc} \)を表している。実験では\(V_{dc}^* \)を300[V]
から320 [V] に急変させたが、このような過渡状態においても安定に制御されており、入力効率1が保たれている。このことから提案する手法は、瞬時な電源電圧を推定することができるため、定常状態だけでなく過渡状態においても有効であることがわかる。

図13に電圧センサを用いて電源電圧を推定した場合と本稿で提案する電源電圧推定法を用いた場合の総合力率を示す。これより提案方式が軽負荷時に8%、重負荷時に0.5%劣ってはいるものの、最大総合力率99%以上という良好な特性を示した。

同様に電圧センサ付きの場合と本推定法を用いた場合の効率特性を図14に示す。これより提案方式が軽負荷時に2%、重負荷時に0.6%程度の効率低下が確認された。これは電源電圧推定値に含まれる高調波成分が電流指令値に反映した結果、線電流の高調波増大したためと思われる。また、後述のように系頻率リアクタルのパラメータミスマッチにより線電流波形に歪みが生じ、この歪みによっても効率が低下するものと考えられる。

図15に電圧センサ付きの場合と本推定法を適用した場合について、線電流をFFT解析した結果を示す。この解析結果から、提案方式が第5次高調波に関して1.7[％]程度減少したもの、第7次と第11
次に図20 に推定波形改善後の線電流に

図16. 異常化の影響（電流波形の拡大図）

図17. 電源電圧推定波形の改善結果（シミュレーション）

関するFFT解析結果を示す。これより改善前と比べて5次高調波で26 ［％］, 第7
次高調波で14 ［％］の改善が見られた。

4.2 パラメータスマッチの影響

提案方法では機器パラメータとして系統
連系リアクトルLの値を用いて、電源電圧
の推定演算を行う。このためパラメータ
スマッチが生じた場合には、制御特性が劣
化すると考えられる。そこで制御装置の設
定値に対して、実際の値が±20 ［％］の誤差

次に図21 に推定波形改善後の線電流に

（4.1）電源電圧推定波形の改善

前節のシミュレーション波形と実験波形
において、電源電圧推定値にスパイクノイ
ズ状の推定誤差が生じることを指摘した。
ここでは、その原因と対策について検討す
る。図16は線電流波形が有するPWMリップ
ルを拡大したものである。表1で示した
ように瞬時有効電力 と、瞬時無効電力 の
推定演算には各相の線電流微分値が必要で
ある。実際には離散時間系で実現するため
差分により近似する。したがって、量子化
分解能が高ければ、図16のとにおける
差分は十分な精度で微分値として扱う
ことができる。しかし、とのように
スイッチングのタイミングを挟んでサンプルした場合は差分に大きな誤差を生じる。
そこで、1サンプル前のスイッチングモード と、新しいスイッチングモード とを比較し、同じであれば
表1の推定演算を実行し、そうでなければ
1サンプル前の推定値を用いるようにする。

図17は以上の対策を施した場合のシミ
ュレーション結果である。これより、 と
はそれぞれの真値とわずかに異なるが、
大きなスパイクノイズ状の推定誤差は一切
生じていないことがわかる。その結果、電
源電圧推定値においても誤差がなくなり、
推定波形が大幅に改善される。一方、図18
と図19は同様の実験結果である。前節で示
した実験波形と比較して瞬時有効・無効電
力推定値、電源電圧推定値の波形が非常に
良好となる。

次に図20 に推定波形改善後の線電流に
マッチにより電源電圧推定値等のリップルが増大するが、制御特性が大幅に劣化することはない。

5) 系統電源に高調波を重畳した場合でも、
実験に電源電圧を推定することができ、
総合効率を向上させることができる。

今後は著者らが提案した有効・無効電力
瞬時値比較制御形 P WM コンバータに本推定法を適用し、さらなる制御特性の向上を図っていく所存である。

文献
(1) 竹下・小林・松井：「電源電圧センサレス
三相 PWM コンバータの一方式」電気論 D, 114, 1211～1219 (平6-12)
(2) 冨木・野口・近藤・横部：「三相電源電圧セ
ンサを用いないPWMコンバータの効率
1 制御法」電学東京支部新設支部, C-21,
135～136 (平7-11)
(3) 冨木・野口・近藤・勝保：「PWMコンバータ
印加電力等の瞬時制御法」電学東京大学
305～308 (平7-8)

図21. パラメータミスマッチがある場合の制御特性(シミュレーション)

図22. 電源高調波重畳時の制御特性
(シミュレーション)

図23. 電源高調波重畳時の制御特性

原稿受付日 平成7年12月25日