電流センサ情報のみを用いた太陽電池の最大電力点追従法

松本寬之^{*} 野口季彦 (長岡技術科学大学)

Maximum-Power-Point Tracking only using Current Sensor Information for Photovoltaic Power Generation System Hiroyuki Matsumoto, and Toshihiko Noguchi (Nagaoka University of Technology)

Abstract

This paper describes a novel strategy of maximum-power-point tracking for photovoltaic power generation systems. The unique feature of this method is capability to seek the maximum power point only using a single current sensor. The output power of the photovoltaic can be estimated with an averaged current and a current ripple amplitude. A conventional hill-climbing method is employed to achieve MPPT, using the estimated output power described above. In this paper, not only a theoretical aspect is described, but also experimental results are presented to show validity of the proposed technique.

キーワード:太陽電池,最大電力点追跡,電流センサ,電流リプル (Photovoltaic, maximum-power-point tracking, current sensor, current ripples)

1.はじめに

太陽光発電はエネルギー源が無尽蔵であることや発電に より二酸化炭素を排出しないなど,環境にやさしい電力源 として注目されている。しかし,光電変換効率が低いため 単位電力量あたりのエネルギーコストが高いことが最も大 きな問題であり,普及の足かせとなっている。

この効率の低い太陽電池を最大に活かす方法が最大電力 点追従法(Maximum-Power-Point Tracking: MPPT)である。 太陽電池の電力特性は動作電圧(電流)に対して上に凸の 形状をもっているため,電力が最大になる最適な動作点が 存在する。その最適動作点で常に動作させるのが MPPT で ある。MPPTにはさまざまな手法が考えられているが,最 も一般的なものは電圧と電流の積から電力を計算して,そ の電力が最大となるように電力変換器の動作電圧(電流) を直接変化させ最適動作点を探索する手法である^[1]。この 手法では電圧と電流を検出しなければならないので直流電 圧センサと直流電流センサが必要となる。

また特殊な手法として,太陽電池の短絡電流から最適動 作電流を決定するものも報告されている^{[2]-[4]}。これは,短 絡電流が最適動作電流に比例することを利用したもので, 短絡電流検出用のモニタ太陽電池を使い動作点を決定する 手法や,瞬間的に太陽電池を短絡させて,そのとき流れる 短絡電流パルスを検出し,そこから最適動作電流を求める 手法もある。この手法で検出するのは電流のみでよいため 直流電圧センサは必要ないが,モニタ用の太陽電池や短絡 するためのスイッチとその制御回路が必要となる。

このように,従来の MPPT 法では電力変換器の主回路上 に複数のセンサやスイッチが必要であり,回路が複雑であった。今回,著者らは電力変換器のスイッチングに伴って 発生する電流リプルに注目した。この電流リプルに着目す

図1 電力 - 電流特性の例

表1 GL418-TF の電気的特性

Table 1. Ratings of GL418-TF

Rated maximum power	6.5 [W]
Rated output voltage	6 [V]

ることにより,直流電流センサのみで最大電力点を検出で きる。これは,従来,必要とされた直流電圧センサや短絡 スイッチを使用することなく最大電力点を探索できること を意味し,主回路の簡単化やコスト低減にも寄与する。

本稿では以上のように電流センサ情報のみを用いて最大 電力点を探索するシステムについて検討した。これは電流

図2 太陽電池と昇圧チョッパ Fig.2. Photovoltaic and boost chopper.

センサから得られる情報のみを用いて電力を推定し,それ に山登り法を適用することで最適動作点を決定するもので ある。ここでは提案する手法の理論的検討をした後,基本 的な動作原理と実験結果について述べる。

2.山登り法

前述のように,変換効率の低い太陽電池は電力が最大と なる最適動作点で動作させることが不可欠である。そこで, この最適動作点をいかにして見つけるかが太陽電池を扱う 上で大きな課題となる。最適動作点の探索法の一つとして 温度や日射強度に応じて時々刻々と変化する太陽電池の特 性をあらかじめデータテーブルに記録しておき,温度セン サや日射計などによって得られる条件から最適動作点を求 める方法がある。これはデータテーブルから瞬時に最適動 作点を検出できる反面,パネル表面の汚染や劣化に完全に 対応できないなど,システムの適応性に問題がある。

これとは対照的に,電力を直接監視し動作点を徐々に変 化させていき、電力が最大になる点を探し出す方法もある。 図1は太陽電池(昭和シェル製 GL418-TF)の電力 - 電流 特性であり,表1にその電気的特性を示す。太陽電池の電 力 - 電流特性は図1に例示されたように山形になっており 山の頂(最大電力点)を探索することから,一般に山登り 法と呼ばれている。図1において,ある電流動作点で微小 に電流を変化させ,その変化に対する電力の傾きを算出す る。傾きが正ならば右側に最大電力点が存在し,傾きが負 ならば左側に最大電力点が存在する。この傾きに応じて動 作電流を変化させ傾きが零になるまで最大電力点を探索す る。この方法は実際の出力を検出しているので,使用条件 の変化にも対応でき適応性に優れている。すなわち,電力 - 電流特性は図1に例示されているように日射強度だけで なく,温度によっても変化し,それに伴って最適動作点も 変化するが,逐次動作点を動かしては最適動作点を探索す るので高い環境適応能力をもっている。また,太陽電池表 面の汚損や経年劣化に対しても優れた MPPT 動作を期待で きる。一方,この手法は逐次探索動作を行わなければなら ないため,最適動作点の決定までに長時間を要する点が問 題である。最近では,フィボナッチ数列や黄金比を応用し

図 3 昇圧チョッパの等価回路 (a) スイッチオン時の等価回路 (b) スイッチオフ時の等価回路

Fig. 3. Equivalent circuit of boost chopper. (a) equivalent circuit in switch-on state. (b) equivalent circuit in switch-off state.

た山登り法も検討されており,その高性能化が検討されている^[5]。

3.提案する最大電力点探索アルゴリズム

3·1 主回路構成

図2に本稿で検討するシステムの回路構成を示す。シス テムは太陽電池,DC-DCコンバータ,負荷抵抗から構成さ れている。DC-DCコンバータとしては昇圧チョッパを用い, 電流センサを一つだけ実装しておく。この回路はスイッチ ング動作を含み非線形となるため,その解析は複雑になる。 そこで,状態平均化法を用いてこの回路を線形的に取り扱 い解析する。静特性を定式化するにあたり,太陽電池は直 流電圧源とそれに直列接続された内部抵抗の等価回路で模 擬する。ただし,等価直流電圧源や内部抵抗は,太陽電池 の動作点により変動し一定ではない。

3・2 コンバータの状態平均化方程式

図 3 (a) ,(b)に主スイッチング素子がオンとオフ時の等価 回路を示す。ここで, r_L , r_S , r_D はそれぞれリアクトル の損失抵抗,スイッチング素子(IGBT)のオン抵抗,ダイ オードの順方向抵抗を表している。このとき,図3の等価 回路に基づいてコンデンサ C_1 の電圧 v_c ,リアクトル電流 *i*_L,そして出力電圧 *v_o*に対して次の状態方程式が得られる。 主スイッチング素子がオン(図3(a))に対し,

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}_{\mathrm{ON}}\mathbf{x} + \mathbf{b}_{\mathrm{ON}}V_{PV} \tag{1}$$

ただし,

$$\mathbf{A}_{\rm ON} = \begin{bmatrix} -\frac{1}{R_{pv}C_1} & -\frac{1}{C_1} & 0\\ \frac{1}{L} & -\frac{r_L + r_s}{L} & 0\\ 0 & 0 & \frac{1}{R_L C_2} \end{bmatrix}, \quad \mathbf{b}_{\rm ON} = \begin{bmatrix} \frac{1}{R_{pv}C_1} \\ 0\\ 0 \end{bmatrix}$$

主スイッチング素子がオフ(図3(b))に対し,

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}_{\mathrm{OFF}}\mathbf{x} + \mathbf{b}_{\mathrm{OFF}}V_{PV}$$
(2)

ただし,

ここで状態ベクトルは $\mathbf{x} = \begin{bmatrix} v_c & i_L & v_o \end{bmatrix}^T$ とした。

上に述べた式を状態平均化法により,平均化状態ベクト ルを $\bar{\mathbf{x}} = [\bar{v}_c \quad \bar{i}_L \quad \bar{v}_o]^T$ とすれば,次の状態平均化方程式が得 られる^[6]。

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\overline{\mathbf{x}} + \mathbf{b}V_{PV} \tag{3}$$

ただし

$$\mathbf{A} = \mathbf{A}_{ON}D + \mathbf{A}_{OFF}D'$$

$$= \begin{bmatrix} -\frac{1}{R_{PV}C_{1}} & -\frac{1}{C_{1}} & 0\\ \frac{1}{L} & -\frac{r_{L} + r_{S}D + r_{D}D'}{L} & -\frac{1}{L}D'\\ 0 & -\frac{1}{C_{2}}D' & \frac{1}{R_{L}C_{2}} \end{bmatrix}$$

$$\mathbf{b} = \mathbf{b}_{ON}D + \mathbf{b}_{OFF}D' = \begin{bmatrix} \frac{1}{R_{PV}C_{1}}\\ 0\\ 0 \end{bmatrix}$$

ここで, D, D'はそれぞれオンのデューティーとオフの デューティーで, D+D'=1である。

3・3 コンバータの静特性と電流リプル

定常状態では dx / dt = 0 であるので,これを(3)に適用すると定常状態のコンデンサ電圧 V_c ,リアクトル電流 I_L , 出力電圧 V_o は次式のように表される。

図 4 従来のシステム構成 (a) 一般的な MPPT システム (b) 短絡電流パルスを用いる MPPT システム

Fig.4. Conventional system configuration. (a) standard MPPT system. (b) short-current pulse based MPPT system.

$$\begin{bmatrix} V_C \\ I_L \\ V_o \end{bmatrix} = \frac{V_{PV}}{r_L + r_S D + r_D D' + R_{PV} + R_L D'^2} \begin{bmatrix} r_L + r_S D + r_D D' + R_L D'^2 \\ 1 \\ R_2 D' \end{bmatrix}$$

(4)

次に,リアクトル電流のリプル∆*i*_Lを求める。リプルはオン時の状態方程式(1)を用いて,それにオンの時間を乗ずることで次式により求められる。

$$\Delta i_L = DT_s \left(\frac{1}{L} v_C - \frac{r_L + r_s}{L} i_L \right)$$

コンデンサ電圧とリアクトル電流を(4)の定常値で近似す れば定常状態のリアクトル電流リプル ΔI, は次式となる。

$$\Delta I_{L} = \frac{DT_{S}}{L} \frac{V_{PV}}{r_{L} + r_{S}D + r_{D}D' + R_{PV} + R_{L}D'^{2}} \left(r_{S}D + r_{D}D' - r_{S} + R_{L}D'^{2} \right)$$

(5)

ただし, T_s はスイッチング周期である。

3・4 電流センサ情報のみを用いた電力の算出

これまでに得られた式から出力電力 W_o を算出する。以上の式において, V_{PV} , R_{PV} , V_C , V_o , R_L は未知であることに注意して計算すると次式が得られる。

図5 提案法のシステム構成 Fig. 5. Proposed system configuration.

$$W_{o} = \frac{V_{o}^{2}}{R_{L}} = \frac{L}{DT_{s}} \Delta I_{L} I_{L} + (r_{s} - r_{D}) D' I_{L}^{2}$$
(6)

上式において, D, D', T_s は操作量としてコントローラ から指定する値であるため既知である。また, L, r_s , r_D は設計するときにおおよその値として知り得る値である。 つまり,(6)は電流センサによって得られる情報 ΔI_L , I_L だ けを使用することにより,出力電力を算出できることを表 している。この(6)で求められた出力に山登り法を適用する ことで最大電力点を探索することができる。

4. 電流センサ情報のみを用いた MPPT システム

4・1 従来の MPPT システム

図4(a)に一般的な従来のシステムを示す。この回路は直 流電圧センサと直流電流センサから得られた情報により電 力を計算し,それが最大となる動作点を探索することで MPPT 制御を行っている。また,図4(b)は特殊なもので短 絡電流パルスを用いたシステム構成である。太陽電池の短 絡電流が最適動作電流に比例する性質を利用し,短絡電流 の定数倍を DC-DC コンバータに対する電流指令値にする ことで MPPT 制御を行う。これらのシステム構成では直流 電流センサのほかに直流電圧センサや短絡用のスイッチが 必要となり,コストの面からも不利である。

4・2 電流センサ情報のみを用いた MPPT システム

図5に提案するシステムの回路構成を示す。先にも述べたように主回路は昇圧チョッパとホール CT のみであるた

め,至ってシンプルな構成である。チョッパのスイッチン グによって変動する電流をホール CT によって検出し,そ こから平均電流と電流リプルを算出する。これを基に電力 を計算し,その電力に山登り法を適用することによって最 大電力点を探索する。このように主回路には電流センサが 一つあれば良いので,コスト的にも有利である。また,シ ンプルな回路構成は回路の小型化にも貢献し,小型太陽電 池モジュールに一体型として搭載することも容易であると 考えられる。

4・3 平均電流と電流リプルの検出

昇圧チョッパのスイッチングは 10 [kHz]で行っているた め, A/D 変換器を使用して電流リプルを検出しようとする と,極めて高速なものが必要となる。そこで,アナログ回 路を用いて電流リプルΔi_Lを検出する。まず,ピークホー ルド回路を用いて電流の極大値と極小値をホールドする。 それらの平均をとったものを平均電流 I_L,差をとったもの を電流リプルΔI_Lとする。図6は電流リプル検出回路の実 装例であり,数個のオペアンプとディスクリート素子を用 いて容易に構成することができる。

5.提案法の実験結果

5・1 ピークホールド回路の動作

図7(a),(b)はリプルが急変したときのピークホールド回路の追従特性を表したものである。(a)はリプルが増加した場合,(b)はリプルが減少した場合の追従を確認したものである。まず,(a)の結果を見るとピーク値の増加に対して瞬時に応答し,新たなピークをホールドしている。しかし,(b)を見ると(a)に比べて応答が遅く,極大値のピークをホールドするまでに約8[ms],極小値のピークをホールドするまでに約14[ms]の時間がかかることがわかる。これはホー

ルドするためのコンデンサが放電する時間に相当し,コン デンサの値を小さくすることでこの時間を短縮することが できる。しかし,あまり小さくしすぎると時定数が小さく なり,次のピークがくる前に放電するため,正確にピークを ホールドできなくなる恐れがある。実際に太陽電池を使用 するにあたり,日射強度の変化は速くとも数秒単位である ことを考えると,今回得られた追従特性でも十分に対応で きると考えられる。

5・2 電流センサ情報から得られる電力計算値

図8は手動でチョッパのデューティーを変えたときの実際の電力と、(6)により電流センサの情報から計算した電力を比較したものである。使用した太陽電池は SHARP 製 S-270A であり、その電気的特性を表2に示す。(a)は日射強度が高い場合、(b)は低い場合を示している。まず、(a)の結

図8 電力測定値と計算値の比較

(a) 照度 551.6~643.2 [W/m²]

(b) 照度 251.0~314.7 [W/m²]

Fig. 8. Comparison between measured and calculated power. (a) illuminance : $551.6 \sim 643.2$ [W/m²]. (b) illuminance : $251.0 \sim 314.7$ [W/m²].

表 2 S-270A の電気的特性

Table 2. I	Ratings	of S-270A
------------	---------	-----------

Rated maximum power	35 [W]
Rated output voltage	16.6 [V]

果を見ると実測値と計算値では後者の方が若干大きく計算 されているが,デューティーが約0.7で共に最大となって いる。(b)についても同様でデューティーが約0.5で最大と なった。本稿で採用する MPPT 法は山登り法であるため, 特に正確な電力の絶対値は必要としない。肝要なのはどの デューティーで電力が最大となるかだけである。これらの 結果より,電力の絶対値に多少の誤差が存在するが,ピー ク値となるデューティーは正確に得られるため,(6)に基づ

図9 電力-デューティー特性と提案法による動作点 Fig. 9. Output power and duty ratio characteristics.

表3 実験条件

Table 3. Experimental conditions.

Test photovoltaic	GL418-TF
Rated maximum power	6.5 [W]
Rated output voltage	6 [V]
Surface temperature	50 []
Switching frequency	10 [kHz]

き電流センサ情報のみを用いて MPPT 制御を実現すること ができる。

5・3 電力測定値と計算値の誤差に関する検討

図8においてデューティーが小さいところで測定値と計 算値に誤差が生じている。この原因として以下の二つが考 えられる。まず,ダイオードの順方向抵抗r_Dの誤差が考え られる。今回,(6)においてr_Dを一定と仮定している。しか し,デューディーが小さいとき回路上の電流は減少し,ダ イオード両端の電圧が飽和電圧に達しないため,順方向抵 抗r_Dが増加したと考えられる。もう一つの原因として,電 流の検出誤差が考えられる。(6)においてデューディーが減 少すると電流に掛かる係数は増加するので,もし検出誤差 が一定だとしても,デューティーの小さいところで誤差が 増加する。このような理由から,今回の結果になったもの と考えられる。

5・4 提案法による最大電力点探索結果

本手法に山登り法を用いて MPPT を行い,最大電力点が 探索されているか確認した。その結果を図9に示し,試験 条件を表3に示す。照度のゆらぎを避けるため,光源はハ ロゲンランプを用いた。結果を見ると動作点はどれも最大 電力点近傍にあり,良好に MPPT ができていることがわか る。推定された最適動作点が真の最大電力点から右にずれ ているが,これは A/D コンバータの誤差やピークホールド の誤差、DSP内での離散化誤差が原因であると考えられる。 しかし,得られる電量の誤差は4%未満であり,充分精度 の高いMPPTが実現されていると考えられる。

6.まとめ

本稿では電流リプルに着目して,従来必要であった直流 電圧センサや短絡用のスイッチを使用することなく,一つ の直流電流センサだけで MPPT が可能であることを理論な らびに実験を通じて明らかにした。

状態平均化法を用いて,電流センサから得られる情報の みで出力電力が計算できることを示した。また,高速に変 動する電流から平均電流と電流リプルを検出する具体的手 法を例示した。

実験では,電流センサから電流リプルの極大値と極小値 が検出できることを確認した。また,電流センサ情報のみ で電力を推定し MPPT の可能性を示した。山登り法を適用 して実際に MPPT を行い,最適動作点が検出できているこ とを実証した。

今後は電力推定誤差の改善と更なる MPPT の高精度化を 行う所存である。

文 献

- K. Takahara, and T. Matsuda, "An Adaptive Control Method for Maximum Power Tracking of Photovoltaic Power Generator," *T.IEE Japan*, Vol.118-D, No.6, 810-811 (1998), (in Japanese).
 高原・松田:「太陽光発電システムの最大電力取得適応制御法」電学論D,6,118,810-811(平10)
- [2] H. Matsuo, and F. Kurokawa, "New Solar Cell Power Supply System Using a Boost Type Bidirectinal DC-DC Converter," *IEEE Trans. Ind. Elec.*, **31**, 1, 51-55 (1984).
- [3] T. Noguchi, S. Togashi, and R. Nakamoto, "Short-Current-Pulse Based Adaptive Maximum-Power-Point Tracking for Photovoltaic Power Generation System," T. IEE Japan, Vol.121-D, No.1, 78-83 (2001), (in Japanese). 野口・富樫・中本:「太陽電池の短絡電流パルスに着目した

適応最大出力点追跡法」電学論 D, 1, 121, 78-83 (平13) [4] T. Noguchi, S. Togashi, and R. Nagamoto, "Short-Current Pulse Based Adaptive Maximum Power Point Tracking Method for Photovoltaic Power Generation System," The 2000 *IEEE Int. Sympo. on Ind. Elec.*, 1, 157-162 (2000).

[5] H. Ko, T. Kouno, K. Maeda, M. Nakano, M. Miyatake, "Experimental Study on PV Power Generation System Applying Maximum Power Point Tracking Control with Fibonacci Search Algorithm," *IEE-Japan Ind. Apple. Soc. Annual Conf.*, 2, 1112, (2002).

高・河野・前田・中野・宮武:「フィボナッチ探索による MPPT 法を用いた太陽光発電の実験的検討」電気学会産業応用部門 大会, 2,1112,(平14)

[6] K. Harada, T. Ninomiya and B. Gu, "The Fundamentals of Switched-Mode Converters," CORONA PUBLISHING CO., LTD. (1992).