直接有効・無効電力制御形 NPC コンバータの 実験検証

佐藤 明* 野口季彦 (長岡技術科学大学)

Experimental Verification of Direct-Power Controlled Neutral-Point-Clamped Converter Akira Sato, and Toshihiko Noguchi (Nagaoka University of Technology)

<u>1.はじめに</u>

筆者らは直接有効・無効電力制御法を用いた NPC コンバ ータ^[1]のシステム構成を検討し,シミュレーションにより その妥当性を検討してきた^{[2]-[4]}。

本稿では直接有効・無効電力制御形 NPC コンバータの基本的な制御特性を実験により検証したので報告する。

<u>2.制御原理</u>

<2.1>システム構成 Fig. 1 に直接有効・無効電力制御形 NPC コンバータを示す。有効電力指令値 P^* は,直流バス電 $E V_{dc}$ とその指令値 V_{dc}^* の偏差を PI 制御器に入力して得ら れた I^* と, V_{dc} の積により得られる。また,無効電力指令値 Q^* は外部より直接与える。 P^* とP, Q^* とQの誤差 P, Qを Fig. 2 に示す多段ヒステリシスコンパレータに入力し量 子化する。この量子化信号 S_p , S_q により瞬時電力の増減を 決定する。電源電圧位相を Fig. 3 に示すように 30 [deg]ごと に $q_1 \sim q_{12}$ と量子化し,空間的に 12 分割して検出する。ま た,中性点電位を制御するために,正側コンデンサ電圧 V_{c1} と負側コンデンサ V_{c2} の誤差も S_{vn} と量子化する。これらの 量子化信号 S_p , S_q , q_n および S_{vn} をスイッチングテーブルに 入力し,その組み合わせに応じて瞬時的なスイッチングモ ードを直接決定する。

スイッチングテーブル構成法として,(1),(2)を用いて1 つの領域における各スイッチングパターンの有効・無効電 力の傾き *dP/dt*,*dQ/dt*を算出し,操作量に適したスイッチ ングパターンを選定する。このように得られたスイッチン グテーブルを Table 1 に示す。

$$\frac{dP}{dt} = K_a \left[K_b (S_a - \frac{S_b}{2} - \frac{S_c}{2}) - \frac{\sqrt{3}}{2} K_c (S_b - S_c) \right]$$
(1)

$$\frac{dQ}{dt} = -K_a \left[\frac{\sqrt{3}}{2} K_b (S_b - S_c) + K_c (S_a - \frac{S_b}{2} - \frac{S_c}{2}) \right]$$
(2)

 $K_a = V_{rms}V_{dc}/L$, $K_b = w t \sin w t - \cos w t$, $K_c = w t \cos w t + \sin w t$
<2.2>ベクトル選択法 1 つの領域においても有効電力
を増加させ, 無効電力を減少させるの傾きの異なる 3 つの

Fig. 1. Block diagram of direct power controlled neutral-point-clamped converter.

S_p	S_q	S_{vn}	\boldsymbol{q}_1	\boldsymbol{q}_2	\boldsymbol{q}_3	\boldsymbol{q}_4	\boldsymbol{q}_5	\boldsymbol{q}_6	\boldsymbol{q}_7	\boldsymbol{q}_8	\boldsymbol{q}_9	q_{10}	q_{11}	q_{12}
1	-1	1	OOP	POP	POP	POO	POO	PPO	PPO	OPO	OPO	OPP	OPP	OOP
		-1	NNO	ONO	ONO	ONN	ONN	OON	OON	NON	NON	NOO	NOO	NNO
2	-2	±1	ONP	ONP	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP
3	-3	± 1	NNP	PNP	PNP	PNN	PNN	PPN	PPN	NPN	NPN	NPP	NPP	NNP
3	3	±1	PPP	PPP	000	000	NNN	NNN	PPP	PPP	000	000	NNN	NNN
-1	-1	1	POP	POO	POO	PPO	PPO	OPO	OPO	OPP	OPP	OOP	OOP	POP
		-1	ONO	ONN	ONN	OON	OON	NON	NON	NOO	NOO	NNO	NNO	ONO
-2	-2	± 1	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP
-3	-3	± 1	PNP	PNN	PNN	PPN	PPN	NPN	NPN	NPP	NPP	NNP	NNP	PNP
-1	1	1	POO	PPO	PPO	OPO	OPO	OPP	OPP	OOP	OOP	POP	POP	POO
		-1	ONN	OON	OON	NON	NON	NOO	NOO	NNO	NNO	ONO	ONO	ONN
-2	2	± 1	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP	PNO	PNO
-3	3	±1	PNN	PPN	PPN	NPN	NPN	NPP	NPP	NNP	NNP	PNP	PNP	PNN

Current

ベクトルが存在する。この3つのベクトルにおいて, Fig. 3 の X を小ベクトル, Y を中ベクトル, Z を大ベクトルとす る。これらのうち1つのベクトルを選択するために,多段 ヒステリシスコンパレータを用いて P , Qの大きさか らベクトルの選択を行う。 S_p , S_q が±3では大ベクトルを, ±2 では中ベクトルを,±1 では小ベクトルを選択する。 また, S_p が1, S_q が2となった場合,大きいベクトルを優 先的に選択する。

<2.3>中性点電位変動補償法 Table 2 $\mathbf{L} \mathbf{X} \mathbf{A} \mathbf{Y}$, Zにおける中性点電位 vnの挙動を示している。ここで,ベ クトル X_P, X_Nは NPC コンバータが出力可能な最小電圧ベ クトルのうち正側または負側コンデンサを充電するベクト ルである。したがって,中性点電位を制御可能なスイッチ ングモードはベクトル X_P,X_Nを出力する場合のみである。 この選択法として, S_p, S_qがともに"1"か"-1"の時, 中 性点電位 v_nが上昇するモードであれば X_Nを,下降するモ ドであれば X_pを選択する。このような小ベクトルの選 択により,中性点電位の変動を抑制することができる。

3.実験結果

実験条件は電源電圧 100 [V],直流バス電圧 180 [V]であ る。Fig. 4 に一例として無効電力指令値 0 [var], 負荷 434 [W] における電源電圧,電流およびコンバータ出力線間電圧波 形を示す。無効電力は0[var]に制御され,結果的に電源電 流は電源電圧と同相になっている。総合入力力率は 98.4 [%]であった。Fig. 5(a)に中性点電位変動補償法の適用前, (b)に補償法適用後の中性点電位波形を示す。適用前の中性 点電位はアンバランスとなっていることがわかる。しかし, 適用後の中性点電位の不平衡は良好に抑制されていること がわかる。Fig.6に総合入力力率をFig.7に総合効率を示す。 力率は最大で 99 [%], 効率は最大で 94 [%]となった。

4.まとめ

本稿では直接有効・無効電力制御形 NPC コンバータの 基本的な制御特性を実験検証した。 今後は電源電圧 200[V] における制御特性を実験検証するとともに,PWM 波形を はじめ各種制御特性の改善について検討していく。

参考文献

- [1] A. Nabae, I. Takahashi, and H. Akagi "A New Neutral Point Clamped PWM Inverter." IEEE Trans. Ind. App., vol. 17, no. 5, 1981.
- [2] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi "Direct Power Control of PWM Converter Without Power-Source-Voltage Sensors." IEEE Trans. Ind. App., vol. 34, no. 3, 1998.
- [3] 佐藤・野口:「中性点クランプ形コンバータの直接電力制御法」 電気関係学会北陸支部連合大会, A-36, 2002
- [4] 佐藤・野口:「直接電力制御方式中性点クランプ形コンバータの 中性点電位変動補償法」電気学会東京支部新潟支所研究発表会, -8,2002

Fig. 7. Efficiency.

Table 2 Behaviour of neutral-point potential.