集中巻 IPM モータの空間高調波に着目した 磁極位置推定法の実験検証

新開克巳* 野口 季彦 (長岡技術科学大学)

Experimental Verification of Spatial Harmonics Based Rotor Position Estimation Method for IPM Motor with Concentrated Windings Katsumi Shingai, and Toshihiko Noguchi (Nagaoka University of Technology)

1. はじめに

集中巻 IPM モータは固定子鉄心が特殊な形状となるため 多くの空間高調波を発生させる。この空間高調波は不均一 な磁路における磁気抵抗の変動によって発生するため、ベ クトル制御で必要となる回転子から観測したインダクタン ス L_d , L_q は回転角に依存すると考えられる。本論文では集 中巻 IPM モータの回転子から観測したインダクタンス L_d , L_q が回転角依存性をもつことに着目し、その変動に起因す る電流制御ループの操作量リプルに基づいて磁極位置を推 定する手法を実験的に検証したので報告する。

2. 回転子座標から観測したインダクタンスの変動

<2.1>空間高調波とインダクタンスの変動 図1に本 論文で検討する集中巻 IPM モータの固定子断面図を示す。 集中巻固定子は同図のように巻線が 60 (deg)毎に施された 形状となるため,回転角に対する磁気抵抗分布は一様にな らない。巻線が施された方向には固定子鉄心の歯が存在す るため磁気抵抗は相対的に小さいが,隣り合った巻線の中 間では磁気抵抗が大きくなる。その結果,回転角に応じて 主磁束の変動が生じ,これが空間高調波として観測される。 この空間高調波はモータの構造に起因するものであり,回 転子から観測したインダクタンス L_d, L_qは回転角に対して 周期的に変動する。

<2.2> 測定結果とインダクタンス変動のモデリング

図2(a),(b)に実験により得られた *d* 軸,*q* 軸インダクタ ンスの分布を示す。この結果より集中巻 IPM モータは分布 巻 IPM モータと比べ,回転角に対するインダクタンスの変 動が大きく,正弦波状に変化することが確認できる。これ を回転子位置の関数として定式化すると,集中巻 IPM モー タの *d* 軸ならびに *q* 軸インダクタンスの変化は(1)のように 表すことができる。

$L_d = l_{d0} - k_{ld} \cos 6p\theta_m$	(1)
$L_q = l_{q0} + k_{lq} \cos 6p\theta_m$	(1)

ただし, l_{d0} , l_{q0} は L_d , L_q の平均値, k_{ld} , k_{lq} はインダクタンス変動の振幅係数, pはモータの極対数である。

3. 磁極位置推定法

空間高調波を含む集中巻 IPM モータに純正弦波電圧を印 加してもモータ電流は正弦波にならない。それを *d-q* 座標 から観測した場合は、空間高調波に起因したリプルが直流 量に重畳したように観測される。逆にベクトル制御系の電 流ループゲインを高くして、空間高調波に起因する電流リ プルを抑制すると、操作量たる電圧指令値に同様のリプル が現れる。本論文で提案する磁極位置推定アルゴリズムは、 このような電流ループの操作量に含まれる空間高調波情報 を利用する。

まず, *d-q* 座標における IPM モータの一般的な回路方程 式は(2)で表される。

前述のように、インダクタンス L_d 、 L_q の回転子位置による 変化は(1)で表されるので、これを(2)に代入すると次のよう に変形することができる。

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R_a + l_{do} \mathbf{p} & -\omega_m l_{q0} \\ \omega_m l_{d0} & R_a + l_{q0} \mathbf{p} \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_m \psi \end{bmatrix} \\ + \begin{bmatrix} 6p\omega_m k_{ld} \sin 6p\theta_m & -\omega_m k_{lq} \cos 6p\theta_m \\ -\omega_m k_{ld} \cos 6p\theta_m & -6p\omega_m k_{lq} \sin 6p\theta_m \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} \\ + \begin{bmatrix} -k_{ld} \cos 6p\theta_m & 0 \\ 0 & k_{lq} \cos 6p\theta_m \end{bmatrix} \mathbf{p} \begin{bmatrix} i_d \\ i_q \end{bmatrix}$$

これを推定座標上に座標変換を行い、 $\Delta \theta$ が微小($\Delta \theta \approx 0$) であると仮定する。また、電流ループゲインは十分高く i_u 、 i_v 、 i_w を正弦波状に制御できるとすれば、空間高調波に起因 した v_d 、 v_a のリプル成分は(4)のように表される。

$$\begin{bmatrix} v_{d6f} \\ v_{q6f} \end{bmatrix} = \omega_m \begin{bmatrix} 6pk_{ld}\sin 6p\theta_m & -k_{lq}\cos 6p\theta_m \\ -k_{ld}\cos 6p\theta_m & -6pk_{lq}\sin 6p\theta_m \end{bmatrix} \begin{bmatrix} \hat{i}_d \\ \hat{i}_q \end{bmatrix} \dots \dots \dots \dots (4)$$

 v_{d6f} , v_{q6f} は運転周波数の 6 倍調波の d 軸, q 軸電圧リプル であり、これらはバンドパスフィルタを用いて抽出するこ とができる。(4)を sin $6\theta_m$ 、 cos $6\theta_m$ について解くと磁極位置 情報は(5)で得られる。

$$\hat{\theta}_{m6f} = \frac{1}{6p} \tan^{-1} \left(\frac{\sin 6p \theta_m}{\cos 6p \theta_m} \right) = \frac{1}{6p} \tan^{-1} \left(\frac{1}{6p} \cdot \frac{-k_{ld} \hat{i}_d v_{d6f} + k_{lq} \hat{i}_q v_{q6f}}{k_{lq} \hat{i}_q v_{d6f} + k_{ld} \hat{i}_d v_{q6f}} \right)$$
(5)

(5)では、巻線が施された歯から隣の巻線が施された歯に至る 60 (deg)区間の磁極位置しか求めることができない。このため、機械角1回転にあたる 6p 周期分の積算を行い、磁極

図3 全制御システムの構成 Fig. 3. Block diagram of whole controller.

Fig. 4. Experimental result of position estimation.

位置推定値を求める。ただし、この手法では磁極位置の絶対的な値を知ることはできないので、1 パルスエンコーダを用いるなどして磁極位置推定値 $\hat{\theta_m}$ をリセットしなければならない。

4. 実機による検証

実験システムのキャリア周波数は 20 (kHz), DSP の演算 周期は 50 (µs)である。また, 電圧リプルは運転速度によっ て周波数が変化するので, 速度指令値により通過帯域の中 心周波数を可変させる適応型バンドパスフィルタを採用し ている。

図4は供試機を速度指令値1000 (r/min)でベクトル制御し, 定常状態において磁極位置推定値のモニタを行ったもので ある。磁極位置真値に対し推定値が一致しており,良好な 推定特性が得られていることがわかる。

5. まとめ

本稿では集中巻 IPM モータの回転子座標上のインダクタ ンスが回転角依存性をもつことに着目し,簡単なインダク タンスの数学モデルを用いた磁極位置推定法を提案した。 実機検証では電流制御ループの操作量リプルを用いて良好 な磁極位置推定特性を確認した。

参考文献

[1] 新開克已・野口季彦:「集中巻 IPM モータの空間高調波に
着目した磁極位置センサレス制御法」 電気学会産業応用部
門大会, 343-346 (2004)