同期リラクタンスモータの最大効率運転を実現する 励磁条件の数理的導出と実験検証

飯塚 直毅* 野口 季彦 (長岡技術科学大学)

Mathematical Derivation of Excitation Condition to Realize Maximum Efficiency Operation of Synchronous Reluctance Motor and Its Experimental Verification

Naoki Iizuka*, and Toshihiko Noguchi (Nagaoka University of Technology)

This paper describes a maximum-efficiency control method of a synchronous reluctance motor, where magnetic saturation and iron loss of the motor are taken into account. The method is based on a simple mathematical model of d- and q-axis inductances with respect to the corresponding axis currents and the maximum efficiency can be obtained by appropriate control of a magnetizing current i_d associated with a torque current i_q . In the proposed strategy, an optimum magnetizing current is mathematically derived as a nonlinear function of i_q and is obtained by an off-line calculation with a derived equation.

In this paper, theoretical analysis of the proposed approach is developed, and then, performance of this maximum-efficiency operation is experimentally examined in comparison with the conventional techniques. As a result, a good agreement was found between optimum operating conditions experimentally sought and theoretically derived.

キーワード:同期リラクタンスモータ,最大効率運転,励磁条件

(synchronous reluctance motor, maximum efficiency operation, excitation condition)

1. はじめに

従来,ACサーボモータとして回転子に永久磁石を有する ものが専ら使用されているが,最近ではコスト低減と信頼 性向上のため同期リラクタンスモータ(SynRM)も工作機 械等に使われるようになってきた。また, SynRMは界磁制 御を行うことができ、高速運転時の鉄損も少ないことから、 フライホイールエネルギー貯蔵システムのモータ / ジェネ レータとしても有望である。周知のように, SynRMの運転 には界磁を発生させるために励磁電流を流す必要があり、 これがモータの運転効率や力率を低下させる主因となって いる⁽¹⁾。このため,励磁電流を運転速度や負荷トルクなどの 運転状況に応じて最適に制御する手法が有効であり,運転 効率や力率を改善することができる。しかし,従来の最大 効率運転法では磁気飽和によるインダクタンスの変動を考 慮していないため,必ずしも効率が最大化されるとは限ら ない。そこで,筆者らは磁気飽和を有するSvnRMの最大効 率運転法を検討し,その有効性を計算機シミュレーション および,実験により確認した⁽²⁾⁻⁽⁵⁾。

本稿では,インダクタンスの磁気飽和モデルを定式化し, 鉄損を考慮した SynRM の数式モデルから最大効率運転を実 現する励磁条件を数理的に導出し,モータパラメータを同 定することにより求まる最適励磁電流と,実際に最大効率 が得られた励磁電流の探索結果とを比較し,実験により, 導出した最適励磁電流による運転特性を評価する。

2. 同期リラクタンスモータの磁気飽和特性

SynRMの鉄心は磁気飽和特性をもつため,固定子巻線に 流れる電流によってインダクタンスが大きく変動する。 SynRMはd軸インダクタンスL_dとq軸インダクタンスL_qの差 によってトルクを発生するため,磁気飽和によるインダク タンスの変動は運転特性に重大な影響を及ぼす。また,一 般にSynRMは磁気飽和が顕著となる動作点近傍で運転する ことが多い。そこで,電流に対するインダクタンスの変動 を考慮することで,最大効率が得られる励磁条件を考えな ければならない。

このインダクタンスの各軸電流に対する特性をモデル化 すると,自然対数を用いて次のように定式化することがで きる。

$$\begin{cases} L_d = -k_{L_d} \ln(i_d) + L_{d0} \\ L_q = -k_{L_q} \ln(i_q) + L_{q0} \end{cases}$$
(1)

図 1 鉄損を無視した同期リラクタンスモータの等価回路 (a) *d* 軸等価回路 (b) *q* 軸等価回路

Fig. 2. Equivalent circuits without iron-core losses. (a) Equivalent circuit of *d*-axis. (b) Equivalent circuit of *q*-axis.

3. 磁気飽和を考慮した最大効率運転法

3・1 鉄損を無視した場合の最大励磁条件。

Fig. 1 に鉄損を無視したSynRMの*d*軸,*q*軸等価回路を示 す。ここで,*R_a*は固定子巻線抵抗である。したがって,定常 状態の電圧電流方程式は以下のように表される。

このとき, トルク *T* およびモータの運転効率 η は(3), (4)となる。

$$\eta = \frac{\omega_m (L_d - L_q) i_d i_q}{R_a (i_d^2 + i_q^2) + \omega_m (L_d - L_q) i_d i_q} \dots (4)$$

これより,最大効率を得る最適励磁条件は $\partial \eta / \partial i_d = 0$ となる i_d を見つけることにより導くことができる。もし, L_d , L_g が 変動せず一定であるならば,最適励磁条件は(5)のように求 められ, i_d を寝しくなるように制御すればよい。

しかし,実際のインダクタンスは,前述のように各軸電流の対数関数となっているため,(5)が最適解とはならない。 そこで,(1)を(4)に代入して $\partial \eta / \partial i_d = 0$ となる最適励磁条件を再度求めると(6)のようになる。

$$i_d = \pm \sqrt{\frac{L_d - L_q - k_{L_d}}{L_d - L_q + k_{L_d}}} i_q \dots (6)$$

(6)は*i_d*や*i_q*の関数である*L_d*, *L_q*を含んでいるので,まだ完全 に最適励磁条件が解けたわけではない。したがって,適当 な*i_d*と*i_q*を与えて繰り返し収束計算を行うことにより,*i_q*に対

図 2 鉄損を考慮した同期リラクタンスモータの等価回路 (a) *d* 軸等価回路 (b) *q* 軸等価回路

Fig. 3. Equivalent circuits with iron-core losses.

(a) Equivalent circuit of *d*-axis. (b) Equivalent circuit of *q*-axis.

する最適なi_dを求めなければならない。

3・2 鉄損を考慮した場合の最大励磁条件。

次に,鉄損を考慮した場合について考える。Fig.2は鉄損 を考慮した SynRM の等価回路である。このときの電圧電流 方程式は(7)で与えられる。

(7)を端子から見た電圧電流方程式に置き換えると(8)のようになり,

前述の銅損のみを考慮した場合と同様に考えると,トルクT は(9)となる。

$$T = \frac{R_c^2}{(R_c^2 + \omega_m^2 L_d L_q)^2} (L_d - L_q) (R_c i_d + \omega_m L_q i_q) (R_c i_q - \omega_m L_d i_d)$$

ここで, トルク *T*を近似的に(10)と表すことにより, 運転効 率η は(11)となる。

$$\eta = \frac{\omega_m (L_d - L_q) i_d i_q}{\left\{ R_a + \omega_m^2 L_d L_q \frac{R_a + R_c}{R_c^2} \right\} (i_d^2 + i_q^2) + \omega_m (L_d - L_q) i_d i_q} \dots (11)$$

ここで,鉄損を考慮しないとき,すなわち,(10),(11)において $R_c \rightarrow \infty$ とすると,トルクTは(3)となり,運転効率 η は(4)となる。

インダクタンスの変動を考慮しなければ,最大効率となる最適励磁条件は,銅損のみの場合と同じく(5)となる。すなわち,(11)について $\partial \eta / \partial i_d = 0$ となる i_d を解くと,

であり,常に q 軸と同じ電流を d 軸に流すことにより,最 大効率運転を達成することができる。しかし,磁気飽和特 性を考慮すると,最適励磁条件は $\partial \eta / \partial i_d = 0$ より銅損のみ を考慮した場合と同様に計算すれば,(12)のように導かれ る。

$$i_{d} = \pm \sqrt{\frac{(L_{d} - L_{q} - k_{L_{d}})R_{a} + \omega_{m}^{2}L_{q}\left\{(L_{d} - L_{q})L_{d} - k_{L_{d}}L_{q}\right\}\frac{R_{a} + R_{c}}{R_{c}^{2}}}{(L_{d} - L_{q} + k_{L_{d}})R_{a} + \omega_{m}^{2}L_{q}\left\{(L_{d} - L_{q})L_{d} - k_{L_{d}}L_{q}\right\}\frac{R_{a} + R_{c}}{R_{c}^{2}}}i_{q}}$$
(12)

(12)においても収束計算を行うことにより,鉄損を考慮した 場合にも最大効率が得られる最適励磁条件を求めることが できる。ここで,鉄損を考慮しないとき,すなわち,(12) において $R_c \rightarrow \infty$ とすると,最大効率が得られる最適励磁条 件は(6)となり,鉄損を無視した場合の最適励磁条件と一致 することが確認できる。

4. モータパラメータの同定

4・1 インダクタンスの測定

実験的に運転特性を検証するために,モータパラメータの同定が必要になる。ここではTable 1 に示す実機のインダクタンスL_d,L_aを測定し磁気飽和特性を実験的に確認した。

測定法としてはSynRMをベクトル制御により運転し,各 軸電流に対するインダクタンスL_d,L_qをモータの数学モデル から計算することにより求まる。まず,各軸電流i_d,i_qおよ び各軸電圧v_d,v_qを測定する。これらの値を用いて,(13)よ りL_d,L_aを求める。

導出される最適励磁条件を比較するために, SynRMの静 止状態にて単相交流法と直流バイアス法にてインダクタン スを測定する。単相交流法は, Fig. 3 (a)に示すようにSynRM を結線し, ロータの位置をd軸またはq軸に合わせた状態で

表1 供試モータの作	仕様
------------	----

Table 1. Specifications of test motor.

•	
Number of Poles	6
Rated Current	10.7 (A)
Rated Power	1.0 (kW)
Rated Speed	1300 (r/min)
Rated Torque	7.1 (Nm)
Rotor Inertia	$0.00416 (\text{kgm}^2)$

単相交流を印加する。このとき,電圧vおよび電流iを測定する。これら値を用いて(14)より,L_d,L_aが求まる。

(b) DC biased excitation method

$$L_{d,q} = \frac{\sqrt{v_{d,q}^2 - R_a^2 i_{d,q}^2}}{\omega i_{d,q}}$$
.....(14)

直流バイアス法は, Fig. 3 (b)に示すようにSynRMを結線し, 同じくロータの位置をd軸またはq軸に合わせた状態で,微 小な単相交流に直流バイアスを印加する。このとき,微小 な交流分の電Ev,電流iを測定し,単相交流法と同様に,(14) よりインダクタンス L_d , L_q が求まる。このとき,励磁電流は 直流バイアス分のみとする。測定されるインダクタンスは, 単相交流法では静的インダクタンスとみなされるが,直流 バイアス法では,SynRMの動作点における動的インダクタ ンスとみなすことができる。

Fig.4(a),(b)に供試モータのインダクタンスの電流依存性 と自然対数でのフィッティングを示す。同図より,各測定 において電流の増加とともにインダクタンスが減少してい くことが確認できる。

4·2 鉄損抵抗の測定

鉄損抵抗 R_c の測定は,負荷モータにて速度を一定に制御 し,機械損 P_m を補償する。このとき,供試験モータのq軸電 流を0とし,d軸電流のみを制御し,供試モータの電力 P_{in} , 電 E_v ,電流iを測定することにより(15)となる。

Fig. 5. Measured iron core-losses equivalent resistance R_c .

(a)

(a) 鉄損を無視したとき(b) 鉄損を考慮したとき(1300rpm)
Fig. 7. Optimal magnetization characteristics (simulation results).
(a) without iron-core losses. (b) with iron-core losses. (1300rpm)

Fig. 5 に鉄損抵抗R_cのモータ回転速度依存性を示す。同図 より,モータ回転数の増加とともに鉄損抵抗R_cが増加するこ とが確認できる。

4·3 機械損の測定

機械損P_mは,軸や軸受けなどの摩擦や風損などが原因で 発生し,SynRMは回転子に磁石をもたないため,フリーラ ン状態では電気的な損失は発生せず,機械速度にのみ依存 する。

測定法としては,SynRMを一定速度で運転している状態 から制御回路にゲートブロックを掛けることによりフリー ランの状態にする。そのときの減衰角速度 を求める。こ のとき,機械損PmはイナーシャJと減衰角速度 より(16)と なる。

 $P_m = \omega_m J \alpha \quad \dots \tag{16}$

機械損Pmは運転速度に比例し, Fig. 6 のような特性を示す。 定格運転時において, およそ 30 (W)の機械損を有するが, これは SynRM の定格電力に対して微小であるため, 導出さ れる最適な励磁電流に大きな影響を及ぼさないと考えられ る。

4・4 最適な励磁電流の導出

測定したモータパラメータから,(6),(12)を用いて最大効 率運転を実現する励磁電流を導出する。Fig.7(a)に鉄損を無 視した場合,Fig.7(b)に鉄損を考慮した場合の最適励磁電流 を示す。同図より鉄損を考慮することにより,鉄損を無視 した場合に比べ,最適な励磁電流は増加する傾向が確認で きる。ベクトル駆動時のインダクタンスと単相交流法での インダクタンスから導出される最適励磁条件は近い値を示 すが,直流バイアス法でのインダクタンスから導出される 最適励磁条件とは大きく異なる。これは,Fig.4に示すよう に,ベクトル制御駆動時のインダクタンスと単相交流法の インダクタンスの飽和の傾きがほぼ一致し,直流バイアス 法のインダクタンスの飽和の傾きとは異なるためである。 また,直流バイアス法のインダクタンスは,測定において 無視した微小交流分の電流の影響により,飽和の傾きが大 きくなっていると思われる。

5. 実機による最適励磁電流の検証

5・1 実験システムの構成

本稿ではFig.8に示したようにDSP(TMS320C6713)を制 御演算に用いて全ディジタル・ソフトウェア制御系を構成 した。DSPによって供試モータと負荷モータを同時に制御す る。また,各種フィードバック量は12bitのA/Dコンバータ を通じてDSP内に取り込まれている。サンプリング周期は DSP内のスレッドによって100(µs)としている。Fig.6にDSP 内で処理される制御ブロック図を示す。速度指令@m*とフィ ードバックしてきた実速度@mを比較しPIレギュレータを通 じてq軸電流指令値iq*を決める。このiq*に対して(12)に基づ いてid*を決定する。他は通常のベクトル制御を行い,三相 電圧指令vu*, vw*, vw* をD/Aコンバータにより出力する。な

図 5 実機システム構成

Fig. 5. Experimental setup.

お,PWM制御は三角波比較方式とし,4(μs)の上下アーム短 絡防止時間を設けている。

5•2 最適励磁特性

実験により,実際に最大効率が得られる励磁電流の探索 を行った。結果を Fig.9 に示す。運転速度の変化による最適 励磁電流の変化はほとんど見られない。また,導出した最 適励磁条件と探索した最適励磁条件はよく一致しているこ とが確認できる。

5·3 運転効率特性

導出した最適励磁電流で最大効率運転が行われていることを示すために,実機により鉄損を考慮した場合の運転特性を測定した。結果をFig. 10 に示す。比較のために励磁電流は,*i*_d=7(A)一定とした場合,(5)に基づく磁束飽和を無視した従来の最大効率運転法においても測定した。同図に示されるように,導出した励磁条件で運転することにより 運転効率が改善されることが確認できる。 6. まとめ

本稿では磁気飽和特性と鉄損を考慮した SynRM の最大効 率運転を実現する励磁条件を数理的に導出した。同式は磁 気飽和を無視した場合,鉄損抵抗を考慮した場合にも適用 できる一般性があることを示した。

また, SynRM のパラメータの同定を行い,導出した励磁 条件と,探索した実際に最高効率が得られる励磁電流が一 致することを示し,実験検証を行った。実験では従来法と 比較することにより,効率が改善されることを示し,モー タの数学モデルから数理的に導出した励磁条件により最大 効率運転が実現することを確認した。

- (1) 松井,千葉,武田:<解説>「リラクタンストルクを利用した回転機」
 電学論D, Vol.114, No.9, pp.824(平6)
- (2) 會澤,野口:「磁気飽和を考慮した同期リラクタンスモータの高効率運 転法」第11回電学新潟支所大会, -16(平13)
- (3) Y. Aisawa, and T. Noguchi, : "High-Efficiency Operation of Synchronous Reluctance Motor Taking Magnetic Saturation into Account", IEEJ National Convention Record., vol. 4, p. 181-182, (2002) 會澤,野口:「磁気飽和特性に着目した同期リラクタンスモータの高効 率運転法」電学全国大会, 4-116(平14)
- (4) T. Kato, and T. Noguchi, : "Maximum-Efficiency and Maximum-Torque Operations of Synchronous Reluctance Motor Taking Magnetic Saturation into Account", IEEJ National Convention Record., vol. 4, p. 209, (2002) 加藤,野口:「磁気飽和を考慮した同期リラクタンスモータの最大効率 運転法と最大トルク運転法」電学全国大会,4-116(平15)
- (5) T. Kato, and T. Noguchi, "Maximum Efficiency Operating Method of Synchronous Reluctance Motor Using Magnetic Saturation Model", IEEJ, SPC-04-20, pp. 19-24, (2004) 加藤,野口:「磁気飽和モデルを用いた同期リラクタンスモータの最大

加藤,野山、磁気肥和モデルを用いた同期リラクタンスモータの最大 効率運転法」電気学会半導体電力変換研究会資料,SPC-04-20,pp.19, (平16)