マトリックスコンバータの入出力直接電力制御法

学生員 岡部 奨* 正員 野口 季彦

Direct Power Control Applied to Input and Output of Matrix Converter

Tsutomu Okabe*, Student Member, and Toshihiko Noguchi, Member

This paper describes a control technique of a direct-power-control (DPC) based matrix converter, where the DPC is applied to both the input and the output of the converter. This strategy is based on a virtual AC/DC/AC conversion system, and the virtual rectifier and the virtual inverter employ the DPC on the basis of instantaneous active and reactive power. Some computer simulations are conducted and their results prove feasibility of the proposed technique to control the matrix converter.

キーワード:マトリックスコンバータ,直接電力制御法,仮想電力変換システム

Keywords : matrix converter, direct power control, virtual power conversion system

1. はじめに

筆者らはこれまでに直接電力制御法をマトリックスコン バータの入力側にのみ適用したシステムを提案し,その有 効性を実験的に確認してきた⁽¹⁾。本稿では,直接電力制御法 の適用を更に拡張し,マトリックスコンバータの入出力双 方に適用したシステム構成を検討する。計算機シミュレー ションにより基本的な運転特性を検証した結果,良好な入 出力制御特性を確認できたので報告する。

2. 制御原理

〈2・1〉 スイッチングパターンの合成 入出力双方に 直接電力制御法を適用したマトリックスコンバータのシス テム構成を図1に示す。本システムでは仮想 AC/DC/AC 変 換方式によりスイッチングパターンの合成を行う⁽²⁾⁽³⁾。制御 対象であるマトリックスコンバータと、それに対応した仮

(a) マトリックスコンバータ
(b) 仮想変換システム
図 2 マトリックスコンバータと仮想 AC/DC/AC 変換システム
Fig. 2. Matrix converter and virtual AC/DC/AC conversion system.
想 AC/DC/AC 変換システムを図 2 に示す。仮想 AC/DC/AC
変換システムの PWM 整流器と PWM インバータのスイッチング関数を用いると、マトリックスコンバータのスイッチング関数は(1)のように合成することができる。ただし、各

$$\begin{bmatrix} S_{au} & S_{bu} & S_{cu} \\ S_{av} & S_{bv} & S_{cv} \\ S_{aw} & S_{bw} & S_{cw} \end{bmatrix} = \begin{bmatrix} S_{up} & S_{un} \\ S_{vp} & S_{vn} \\ S_{wp} & S_{wn} \end{bmatrix} \begin{bmatrix} S_{ap} & S_{bp} & S_{cp} \\ S_{an} & S_{bn} & S_{cn} \end{bmatrix}$$
(1)

図1 マトリックスコンバータの入出力に直接電力制御法を適用したシステムブロック図 Fig. 1. Block diagram of direct-power-control system applied to input and output of matrix converter.

スイッチング関数は1か0のいずれの値しかとらない。

(2.2) 仮想電流形 PWM 整流器の制御 仮想電流形 PWM 整流器の制御に、高速な電力制御が可能な直接電力制 御法を適用する⁽⁴⁾。まず,電源電圧と電流に三相-二相絶対 変換を施し、 v_{α} 、 v_{β} および i_{α} 、 i_{β} を得る。これらの値を用い て,交流側の瞬時有効電力 P と瞬時無効電力 Q を算出する。 瞬時有効電力指令値 P*は仮想電圧形インバータから要求さ れる負荷有効電力を用いる。瞬時無効電力指令値 Q*は所望 の入力力率に応じて外部から直接与え,総合入力力率1制 御を行う場合は Q^{*}=0 とする。 各瞬時電力の偏差 AP, AQ は ヒステリシス要素で二値化し量子化信号 Spi, Sqi とする。ま た、AQのヒステリシス幅からの逸脱を検出して補償するた めに別のヒステリシス要素で二値化した量子化信号 Sais も 設ける。電源電圧ベクトルの位相も 12 の領域 Θ_{in} に量子化 する。 S_{pi} , S_{qi} , S_{qis} および Θ_{in} の組み合わせに応じて仮想電 流形 PWM 整流器のスイッチングモード Sa, Sb, Sc をスイッ チングテーブルで直接決定することにより P と Q の高速な リレー制御を行う。図3にこのスイッチングテーブルと各 スイッチングモードの定義を示す。

〈2·3〉 仮想電圧形 PWM インバータの制御 仮想電圧 形 PWM インバータにも直接電力制御法を適用する。出力電 流 i_u , i_v , i_w とその指令値 i_u^* , i_v^* , omegau and condent and co

 $P_{L}^{*} = v_{u}^{*} i_{u} + v_{v}^{*} i_{v} + v_{w}^{*} i_{w}$ $Q_{L}^{*} = \sqrt{3} \left\{ (v_{v}^{*} - v_{w}^{*})i_{u} + (v_{w}^{*} - v_{u}^{*})i_{v} + (v_{u}^{*} - v_{v}^{*})i_{w} \right\}$ (2)

瞬時有効電力の偏差 $\Delta P \ge Q_L^*$ はヒステリシスで二値化し, 量子化信号 S_{po} , S_{qo} とする。また,出力電圧ベクトルの位相 も 6 つの領域 Θ_{out} に量子化する。 S_{po} , S_{qo} および Θ_{out} の組み 合わせに応じて仮想電圧形 PWM インバータのスイッチン グモード S_u , S_v , S_w をスイッチングテーブルで直接決定す る。図 4 にこのスイッチングテーブルと各スイッチングモ ードの定義を示す。

S_{qi}	Sqis	Spi	$\Theta_{\rm l}$	Θ_2	Θ_3	Θ_4	<i>O</i> 5	Θ_6	Θ_7	Θ_8	Θ,	Θ_{10}	Θ_{11}	Θ_{12}
0	0	0	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP	PNO	PNO
1	0	0	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP
1	1	0	ONP	ONP	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP
0	1	0	ONP	PON	PNO	OPN	PON	NPO	OPN	NOP	NPO	ONP	NOP	PNO
0	0	1	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP	PNO
1	0	1	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP	PNO
1	1	1	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP
0	1	1	PNO	PNO	PON	PON	OPN	OPN	NPO	NPO	NOP	NOP	ONP	ONP

 $P = S_{mp}: 1, S_{mn}: 0$ $O = S_{mp}, S_{mn}: 0$ $N = S_{mp}: 0, S_{mn}: 1$ $\therefore m = a, b, c$

図3 仮想 PWM 整流器のスイッチングテーブル

Fig. 3. Switching-state table of virtual PWM rectifier.

S_p	S_q	Θ_{l}	Θ_2	Θ_3	Θ_4	Θ_5	<i>O</i> 6	
1	0	101	100	110	010	011	001	$1 = S_{mp}: 1, S_{mn}: 0$
1	1	111	000	111	000	111	000	$0 = S_{mp}: 0, S_{mn}: 1$
0	0	100	110	010	011	001	101	m = u, v, w
0	1	110	010	011	001	101	100	

図4 仮想 PWM インバータのスイッチングテーブル

Fig. 4. Switching-state table of virtual PWM inverter.

図 5 30Hz 出力における各種波形 (シミュレーション結果) Fig. 5. Waveforms at 30-Hz output (simulation result.)

3. 計算機シミュレーションによる検証

提案するシステムの制御特性を検証するためにシミュレ ーションを行った。電源電圧 200V,電源周波数 50Hz,入 カフィルタ L_f=2.7mH(0.04 p.u.) および C_f=40µF(0.28 p.u.), 負荷 L=3.7mH および R=25 Qの条件とした。図 5 に出力電流 指令値を 30Hz とした場合のシミュレーション結果を示す。 入力電流波形は 50Hz の正弦波となっており,力率1 制御が 達成されていることが確認できる。また入力電流および出 力線間電圧のスペクトルより,大きな高調波が発生してお らず良好に制御が行われていることがわかる。

4. まとめ

本稿では直接電力制御法をマトリックスコンバータの入 出力に適用したシステムについて検討した。シミュレーシ ョン結果より,入力電流は良好な正弦波状に制御され力率1 制御を達成すると同時に,出力電圧も高調波の少ない良好 な波形に制御できることを確認した。

献

文

- (1) 竹内・佐藤・野口:「直接電力制御法を適用したマトリクスコンバー タの新制御法」,電学産応, 1, 309-312 (2004)
- (2) 伊藤・高橋:「マトリクスコンバータにおける入出力無効電力の非干 渉制御法」, 電学 SPC, SPC-01-121 (2001)
- (3) 佐藤・野口:「直接電力制御法による PWM コンバータ平滑コンデン サ小容量化」、電学 SPC, SPC-04-15 (2004)
- (4) 佐藤・野口:「電流形 PWM コンバータの直接電力制御法」,電学全 大,4-026 (2004)