電流ノルムに着目した永久磁石同期モータの オフラインパラメータ同定法 季 翔* 野口 季彦(静岡大学)

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Based on Current Norm Ji Xiang^{*}, Toshihiko Noguchi(Shizuoka University)

This paper proposes a new approach to off-line parameter identification of a permanent magnet synchronous motor, using its current norm. The current norm changes as a parameter mismatch varies, and the minimum or the maximum value is obtained when the parameter mismatch is completely eliminated. Using a simple hill-climbing method to search the minimum or the maximum point of the current norm, it is possible to achieve the off-line parameter identification. This paper describes a basic operation of the proposed approach, and shows relationship between the parameter mismatch and the current norm on the basis of the motor mathematical model and computer simulations.

キーワード:数学モデル,永久磁石同期モータ,パラメータ,同定法,P制御 Keywords: mathematical model, permanent magnet synchronous motor, parameter, identification, P control

1. はじめに

永久磁石モータ(PMSM)は,小形,高効率,高出力であるた め,応用範囲は広がっている。しかし永久磁石モータは外部 の影響でパラメータは変化する。この変化は制御に悪い影 響を加えるし制御の精度も悪くなる。制御の精度を求める ために変化したパラメータは同定する必要がある。でも永 久磁石モータの内部構造によって二つ種類が分ける。一つ は表面永久磁石同期モータ(SPMSM);もう一つは内部永久 磁石同期モータ(IPMSM)。この二つ種類永久磁石モータの構 造によって数学モデル制御システムが違うので分別考える 必要がある^{(1),(2)}。

筆者らは,既存永久磁石同期モータ制御システムを適応 して SPMSM と IPMSM この二つ種類の永久磁石モータのパ ラメータ同定法を既に提案し,アルゴリズムの導出とシミュ レーション結果を示す。

2. 永久磁石同期モータ制御システム

〈2・1〉 永久磁石同期モータ制御システム 図1に永 久磁石同期モータ制御システムの構成を示す^{(3),(4)}。この制 御システムは永久磁石同期モータ(PMSM)の構造によって モータのd-q軸お互いに影響加える成分を消すためにコン トローラ側も同じような成分を増える。このような設計の

図 1 永久磁石同期モータ制御システム Fig. 1. Permanent magnet synchronous motor's mathematical model control system.

ため制御の精度が良くなる。

〈2・2〉 電流ノルムの求める方法 永久磁石同期モー タ数学モデル制御システムから図 2 のベクトル制御ブロッ ク図を取り出す。このブロック図から d, q 軸の電流を利用 する電流ノルムを求める。

3. 提案する同定システム及びシミュレーション

PMSM の特性と構造によって同期モータの特性が違う。 SPMSM は $L_d = L_q = L_a$ 特性である。IPMSM は $L_d < L_q$ 特性である,この二つ構造によって図 3 の同定システムを提案する。今回はインダクタンス同定と磁束同定をまとめて提案する。

コントローラ側のパラメータ変化する場合電流ノルムの変 化特性を分かるために,既存のシステム使用した PI 制御は P 制御に代わる。

(3·1) SPMSM のパラメータ同定 モータのパラメータ 同時に同定は困難なので、ここでインダクタンスと磁束は分 別同定する。表1にシミュレーション用 SPMSM の定数を 示す。

(1) インダクタンス同定

図3にインダクタンス同定システムの構成を示す。

ブロック図3から i_a, i_a 電流を求める。

$$i_{d} = \frac{i_{d}^{*}G_{pd}(G_{pq}+R) - i_{q}^{*}G_{pq}\omega(\hat{L}_{a}-L_{a}) + \omega^{2}(\hat{L}_{a}-L_{a})\psi}{(G_{nd}+R)(G_{nq}+R) + \omega^{2}(L_{a}-\hat{L}_{a})^{2}} .(1)$$

$$i_{d} = \frac{-i_{q}^{*}G_{p}\omega(\hat{L}_{a} - L_{a}) + \omega^{2}(\hat{L}_{a} - L_{a})\psi}{(G_{p} + R)(G_{p} + R) + \omega^{2}(L_{a} - \hat{L}_{a})^{2}} \dots (2)$$

以下の条件を(1),(2)に代入する。

$$i_d^* = 0, G_{pd} = G_{pq} = G_p$$
(3)

(1),(2)は以下の(4),(5)になる。

$$i_{d} = \frac{-i_{q}^{*}G_{p}\omega(\hat{L}_{a} - L_{a}) + \omega^{2}(\hat{L}_{a} - L_{a})\psi}{(G_{p} + R)^{2} + \omega^{2}(L_{a} - \hat{L}_{a})^{2}} \dots$$
(4)

 $i_{q} = \frac{i_{q}^{*}G_{p}(G_{p}+R) - \omega\psi(G_{p}+R)}{(G_{p}+R)^{2} + \omega^{2}(L_{a}-\hat{L}_{a})^{2}} \dots (5)$

式(4)(5)から電流ノルムが求める。

$$i_n = \sqrt{i_d^2 + i_q^2} \tag{6}$$

式(6)で電流ノルムの理論特性を求める。

パラメータは表1に設定する,理論とシミュレーションの特性は図4に示す。

縦軸は電流ノルム,横軸はコントローラ側とモータ側のイ ンダクタンス偏差値。

図4示すように偏差値は0になる場合電流ノルムは最大 になる。その時コントローラ側の設定したインダクタンス とモータ側のインダクタンスは一致することを表してい

図 3 提案するインダクタンス同定システム Fig. 3. The proposed inductance identification system.

```
表1 表面永久磁石同期モータのパラメータ
```

Table 1. Parameters of SPMSM.

Number of poles	4
Winding resistance	0.48 Ω
Rated output power	1.5 KW
Rated rotation speed	7200 r/min
Field flux linkage	0.06737 Wb
Damping coefficient	0.00019 Ns/rad
Inductance	7.3 mH
Simulation speed	3000 r/min

図4 コントロール側インダクタンス変化による 電流ノルム特性の理論とシミュレーション特性 Fig. 4. The comparison of theory and simulation current norm change characteristics by changing the control side inductance.

る。

(2) 磁束同定 コントローラ側のインダクタンスと モータ側のインダクタンスは打ち消しと考えるので、磁束だ けを考える。モータの磁束を同定するため、コントローラ側 も磁束と同じ大きさの成分を入るは必要なる。そのためブ ロック図は図5になる。

ブロック図5から i_a, i_a 電流を求める。

$$i_d = \frac{i_d^* G_{pd}}{G_{pd} + R} \tag{7}$$

$$\dot{i}_q = \frac{i_q^* G_{pq} + \omega(\hat{\psi} - \psi)}{G_{ro} + R} \dots (8)$$

以下の条件を(7),(8)に代入する。

$i_q^* = 0, G_{pd} = G_{pq} = G_p$		(9)
------------------------------------	--	-----

(7), (8)は以下の(10), (11)になる。

$$i_d = \frac{i_d^* G_p}{G_p + R} \tag{10}$$

式(10)(11)から電流ノルムが求める。

$$i_n = \sqrt{i_d^2 + i_q^2}$$
(12)

式(12)で電流ノルムの理論特性を求める。

図 6 は理論とシミュレーション特性示す。この特性か らコントローラ側の磁束とモータの磁束が一致した場合電 流ノルムが最小になることを証明できる。

SPMSM と IPMSM の磁束同定は同じブロック図5を提 案するため。理論とシミュレーションは同様になる。

〈3·2〉 IPMSM のパラメータ同定 IPMSM と SPMSM の磁束同定は同じ方法で行うので,ここは d 軸インダクタン スと q 軸インダクタンスの同定法だけを提案する。

しかし d 軸インダクタンスと q 軸インダクタンスは同時に同定は困難なので,ここから d 軸インダクタンスと q 軸 インダクタンス同定用のブロック図を分別提案する。表 2 はシミュレーション用 IPMSM の定数を示している。

IPMSM の q 軸インダクタンス同定

提案するブロック図の構成は図 7 に示す。パラメー タの設定は表2と一緒になる。

ブロック図7から i_a, i_a 電流を求める。

$$i_{d} = \frac{i_{d}^{*}G_{pd}(G_{pq} + R) - \omega(i_{q}^{*}G_{pq} - \omega\psi)(\hat{L}_{q} - L_{q})}{(G_{pd} + R)(G_{pq} + R)} \dots \dots \dots \dots (13)$$

$$i_q = \frac{i_q^* G_{pq} - \omega \psi}{G_{pq} + R}$$
(14)

以下の条件を(13), (14)に代入する。

(13), (14)は以下の(16), (17)になる。

式(16)(17)から電流ノルムが求める。

 $i_n = \sqrt{i_d^2 + i_q^2}$ (18)

式(18)で電流ノルムの理論特性を求める。

図8は電流ノルムの理論とシミュレーション特性示す。

図6 コントローラ側磁束変化による電流ノルムの理論 とシミュレーション特性

Fig. 6. The comparison of theory and simulation current norm change characteristics by changing the control side.

表2 内部永久磁石同期モータのパラメータ

Table 2. Parameters of IPMSM	Λ.
------------------------------	----

Number of poles	4
Winding resistance	0.48 Ω
Rated output power	1.5 KW
Rated rotation speed	7200 r/min
Field flux linkage	0.06737 Wb
Damping coefficient	0.00019 Ns/rad
q-axis inductance	12 mH
d-axis inductance	7.3 mH
Simulation speed	3000 r/min

図7 提案するq軸インダクタンス同定システム Fig. 7. The proposed q-axis identification system.

この特性はコントローラ側の q 軸インダクタンスとモ

ータの q 軸インダクタンスが一致した時電流ノルムが最小 になることを表している。

(2) IPMSMのd軸インダクタンス同定
 提案するブロック図の構成は図9に示す。

図9示すようにIPMSMのq軸電流はモータ側の磁束 の影響があるので,その影響を消すためにコントローラもq 軸の電流に同じような成分を入るは必要である。

ブロック図 9 から i_d, i_q 電流を求める。

$$i_d = \frac{i_d^* G_{pd}}{G_{pd} + R}$$
(19)

$$i_{q} = \frac{i_{q}^{*}G_{pq}(G_{pd} + R) + \omega(\hat{L}_{d} - L_{d})i_{d}^{*}G_{pd}(G_{pq} + R)}{(G_{pq} + R)(G_{pd} + R)} \dots \dots (20)$$

以下の条件を(19), (20)に代入する。

 $i_q^* = 0, G_{pd} = G_{pq} = G_p$ (21)

(19), (20)は以下の(22), (23)になる。

- $i_d = \frac{i_d^* G_p}{G_p + R} \tag{22}$

式(22)(23)から電流ノルムが求める。

$$i_n = \sqrt{i_d^2 + i_q^2} \tag{24}$$

式(24)から電流ノルムの理論特性を求める。

図 10 は電流ノルムの理論とシミュレーション特性示 す。この特性はコントローラ側の d 軸インダクタンスとモ ータの d 軸インダクタンスが一致した時電流ノルムが最小 になることを表している。

4. まとめ

本論文では、PM モータ制御システムの数学モデルに基づ く、SPMSM と IPMSM は対象として、P 制御を活用する。 新たな同定システムをお提案した。その提案したシステム の理論とシミュレーションの結果により PMSM の同定は検討 した。

今後は、実機で理論とシミュレーションの結果を検証する。

文 献

- (1)野口 敏彦:「高調波瞬時無効電力に着目したサーボモータのロータ 位置センサレス制御に関する研究」,課題番号 11650281,平成 11 年度~平成 12 年度 科学研究費補助金(基盤研究(c)(2))研究成果報 告書(平成 13 年 3 月)
- (2) 小原, 野口:「モデル規範適応システムに基づく永久磁石モータの

図8 コントロール側 q 軸インダクタンス変化による電流 ノルムの理論とシミュレーション特性

Fig. 8. The comparison of theory and simulation current norm change characteristics by changing the control side q-axis inductance.

^{-0.008-0.006-0.004-0.0020.000 0.002 0.004 0.006 0.008} d軸 インダクタンス(mH)

図 10 コントロール側 d 軸インダクタンス変化による電流ノルムの理論とシミュレーション特性

Fig. 10. The comparison of theory and simulation current norm change characteristics by changing the control side d-axis inductance.

センサレス制御法」 平成 22 年電気学会全国大会講演論文集 No.4-107 pp.183-184(2010)

- (3)織田,野口,川上,佐野:「磁極位置センサレス PM モータの推定
 誤差要因とその対策」 平成 20 年電気学会産業応用部門大会講演論
 文集 No.1-55 pp.273·276(2008)
- (4) 工藤,野口,川上,佐野:「IPMモータ制御システムの数学モデル誤 差とその補償法」
 電学半導体電力変換研究会,SPC-08-25(平 20)