モデル規範適応システムに基づく 内部永久磁石同期モータの初期磁極位置推定

小原正樹*(竹中製作所),野口季彦(静岡大学)

Initial Rotor Position Estimation of Interior Permanent Magnet Synchronous Motor Based on Model Reference Adaptive System Masaki Ohara (Takenaka Seisakusho), Toshihiko Noguchi (Shizuoka University)

1. はじめに

永久磁石同期モータ (PMSM) は、小形、高効率、高出 力であるため、その応用分野は産業、自動車、家電など多 岐にわたっている。特に家電分野においては、性能、コス ト、信頼性の点から磁極位置センサレス制御が不可欠な技 術となっている。センサレス制御の方法はその使用する速 度領域、すなわち中高速度域、低速度域、停止中(初期磁 極位置の検出)に応じて分類される。その中で内部永久磁 石同期モータ(IPMSM)は突極性をもつため磁極位置に応 じてインダクタンスが変化するので、表面永久磁石同期モ ータ(SPMSM)では実現が難しい停止中、低速度域でのセ ンサレス制御が可能である。このため、高周波電圧を注入 しインダクタンスを算出して磁極位置を求める方法を中心 に種々の方法が提案されている⁽¹⁾⁽²⁾。しかしながら、これら ほとんどの方法は磁極位置の検出とN極S極の判別を別々 に行う必要がある。

筆者らは、モデル規範適応システム(MRAS)を適用し て SPMSM における誘起電圧を利用した磁極位置センサレ ス制御法を既に提案し、実機実験にてその制御性能と有効 性を検証している⁽³⁾。今回、同様に MRAS を用いて IPMSM の初期磁極位置を推定する手法を提案する。本手法では初 期磁極位置の推定と極性判別を同時に行うことが可能であ る。本稿では、提案する MRAS の構成、磁極位置推定アル ゴリズムの導出と実験結果を示す。

2. モデル規範適応システムの構成

図1に MRAS を用いた初期磁極位置推定システムの構成 を示す。

〈2·1〉規範モデル IPMSM の *d-q* 回転座標における状態方程式を(1)に示す。

$$\dot{\mathbf{x}}' = A\mathbf{x}' - \omega B J B^{-1} \mathbf{x}' + B \mathbf{u}' - B \mathbf{e}_{dq}$$
(1a)
$$\mathbf{v}' = C \mathbf{x}'$$
(1b)

ここで, $\mathbf{x}' = \mathbf{y}' = [i_d \quad i_q]^T$, $\mathbf{u}' = [v_d \quad v_q]^T$, $\mathbf{e}_{dq} = [0 \omega \phi]^T$: 永久磁 石による誘起電圧, v_d , v_q , i_d , i_q : 回転座標上の電圧, 電 流, ω : 回転速度, θ : 磁極位置真値, ϕ : 誘起電圧定数, R: 巻線抵抗, L_d , L_q : 同期インダクタンス

図1 MRAS による初期位置推定システムの構成

Fig. 1. Configuration of initial permanent magnet pole position estimation system based on MRAS.

$$\boldsymbol{A} = \begin{bmatrix} -R/L_d & 0\\ 0 & -R/L_q \end{bmatrix} \quad \boldsymbol{B} = \begin{bmatrix} 1/L_d & 0\\ 0 & 1/L_q \end{bmatrix} \quad \boldsymbol{C} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \quad \boldsymbol{J} = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$

非干渉制御を施して干渉項を取り除き,巻線抵抗と同期インダクタンスはモデル値として求めた式を,規範モデルと すると次式のようになる。

〈2·2〉*γ-δ* 推定回転座標での状態方程式 *d-q* 座標と *γ-δ* 座標との変換は次式で与えられる。

$$\boldsymbol{x} = \boldsymbol{R}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \boldsymbol{x}$$
(3)

$$\mathcal{L} = \mathbf{R}(\theta - \theta) \mathbf{r} \tag{4}$$

ここで, $\mathbf{x} = [i_{\gamma} \quad i_{\delta}]^{T}, v_{\gamma}, v_{\delta}, i_{\gamma}, i_{\delta}$: 推定回転座標の電圧と電流, $\hat{\theta}$: 磁極位置推定値, $\mathbf{R}(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$

(1a)の行列*A*, *B*を行列*A_m*, *B_m*に置き換えた式に(3),(4)を代入し、さらに回転速度推定値を \hat{o} とおくと、初期状態では $\omega = \hat{o} = 0$ であり、 $\theta - \hat{\theta} = - 定と考えてよいので、$

$$\boldsymbol{R}(\theta - \hat{\theta}) \, \dot{\boldsymbol{x}} = \boldsymbol{A}_m \boldsymbol{R}(\theta - \hat{\theta}) \, \boldsymbol{x} + \boldsymbol{B}_m \boldsymbol{R}(\theta - \hat{\theta}) \, \boldsymbol{r}$$
(5)

$$\boldsymbol{z}_{\boldsymbol{x}} \boldsymbol{z}_{\boldsymbol{o}}$$

〈2·3〉誤差方程式 規範モデルと実際値との誤差 ε_γ,ε_δ

u

図2 モデル誤差を含んだ MRAS のブロック図

Fig. 2. Block diagram of MRAS with model error. を以下に定義する。

$$\varepsilon = \begin{bmatrix} \varepsilon_{\gamma} & \varepsilon_{\delta} \end{bmatrix}^T, \varepsilon_{\gamma} = \hat{i}_d - i_{\gamma}, \varepsilon_{\delta} = \hat{i}_q - i_{\delta}$$
(6)

(2)と(5)から誤差方程式を求める。電圧印加時は推定動作 を実行しないと仮定する。また、電流検出の間隔が電流回 路の時定数に比べて十分短いと仮定すれば *x*=0 とみなし てよいので次式となる。

$$\dot{\boldsymbol{\varepsilon}} \cong \boldsymbol{A}_{m}\boldsymbol{\varepsilon} + \boldsymbol{A}_{m}\{\boldsymbol{I} - \boldsymbol{R}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})\}\boldsymbol{x} \\
= \boldsymbol{A}_{m}\boldsymbol{\varepsilon} + \delta \boldsymbol{R}\boldsymbol{B}_{m}\boldsymbol{x} + \sin(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})\boldsymbol{A}_{m}\boldsymbol{J}\boldsymbol{x} \tag{7}$$
ここで、 $\delta \boldsymbol{R} = \{\cos(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) - 1\}\boldsymbol{R}_{m} : \boldsymbol{\tau} \boldsymbol{\tau} \boldsymbol{\tau} \boldsymbol{\nu}$ 誤差

〈2·4〉安定性と推定則 まず、 $\delta R = 0$ での磁極位置 $\hat{\theta}$ の 推定則を求める。 $\delta R = 0$ を(7)に代入すると

$$\dot{\boldsymbol{\varepsilon}} = \boldsymbol{A}_m \boldsymbol{\varepsilon} + \sin(\boldsymbol{\theta} - \boldsymbol{\theta}) \boldsymbol{A}_m \boldsymbol{J} \boldsymbol{x}$$
(8)

となる。リアプノフ関数を

$$V=1/2\boldsymbol{\varepsilon}^{T}\boldsymbol{\varepsilon}+\{1-\cos(\theta-\theta)\}/r_{1}$$
(9)

ここで,
$$V > 0$$
 ($\forall \varepsilon$, $\forall (\theta - \hat{\theta})$ 但し, $\varepsilon \neq 0$, $\theta - \hat{\theta} \neq 0$), $V = 0$
($\varepsilon = 0$, $\theta = \hat{\theta}$), $r_1 : ゲイ \succ (r_1 > 0$)

とおくと、安定であるための条件 $\dot{V} \leq 0$ を満足する、磁極位 置推定値 $\hat{\theta}$ の推定則は、 θ =一定より

 $\hat{\theta} = r \left(R_m / L_{dm} \varepsilon_{\gamma} i_{\delta} - R_m / L_{qm} \varepsilon_{\delta} i_{\gamma} \right)$ と求まる^{(4) (5)}。
(10)

次に、(10)の推定則で $\delta R \neq 0$ の場合について推定系の安定 性を求める。 δR をモデル誤差あるいは外乱入力と考えたと きの制御系ブロック図を図 2 に示す。モデル誤差があって も、入力信号の PE 性が満たされる場合は安定である⁽⁵⁾。

また、回転子磁石の磁束の影響によって固定子の過度リ アクタンスに差を生じ、その結果、推定磁極軸(y軸)の電 流極性によって電流値に差が出ることを利用して、磁極位 置の正負を判別することができる。

3. 実機実験による検証

提案法の妥当性を検証するため、実機実験を行った。表 1にモータのパラメータを示す。モータの磁極位置を適当 にずらした後、モータが回転しないように高周波のパルス 電圧を y 推定軸のみに注入した。

図3は初期磁極位置を-45°に設定して推定を行った実験

表1 モータ定数

Table 1. Parameters of IPMS	M.
-----------------------------	----

Number of poles	4
Rated power	1 KW
Rated current	3. 7 A
Rated speed	2000 r/min
winding resistance	1. 1Ω
q axis winding inductance	9.78mH
d axis winding inductance	8. 05mH
Back E.M.F coefficient	89.7mV/r/min

凶3. 初朔磁極也直把足付住.

Fig. 3. Charasteristics of intial rotor position estimation

結果である。今回注入した高周波電圧は周期が 800 Hz でパルス幅を 0.25 ms とした。推定誤差($\theta - \hat{\theta}$)が推定を開始した後,約 50 ~ 60 ms でゼロに収束している様子がわかる。また、同時に y 推定軸の平均電流がプラスになっていることから磁石の磁極はN極であると判別できる。

以上の実験結果から、磁極位置の推定動作が終了した時 点で磁極の極性も判別できているので、別途極性判別を行 わなくても磁極位置が直ちに-45°であると推定できる。

4. まとめ

本稿では、IPMSM において MRAS による初期磁極位置 と磁石極性を同時に推定できる手法を提案し、推定則の導 出を行い、実機実験によりその有効性を確認できた。今後 は、内部永久磁石同期モータ(IPMSM)での低速度域、中 高速度域でのセンサレス制御について検討する。

文 献

- (1) 電気学会技術報告 No. 1145 2009
- (2) 電気学会技術報告 No. 1034 2005
- (3) 小原, 野口 平成 22 年度産業応用部門大会 I-71 2010
- (4) K.J. Astrom, B. Wittenmark 「 Adaptive Control」, Second Edition, Addison Wesley 1995
- (5) 鈴木 隆「アダプティブコントロール」コロナ社 2001