# 空間高調波を界磁エネルギー源とする 自励式電磁石モータの高トルク密度化の検討

青山 真大(静岡大学,スズキ株式会社) 野口 季彦(静岡大学)

# Study on High Torque Density Design of Self-Magnetized Motor with Field Poles Excited by Space Harmonics

Masahiro Aoyama (Shizuoka University, Suzuki Motor Corporation), Toshihiko Noguchi (Shizuoka University)

This paper describes a study on a high-torque-density synchronous motor in which space harmonics power is utilized for field magnetization instead of permanent magnets. Use of small permanent magnets for magnetic shielding in a conventional model makes it possible to raise the torque density because electromagnetic force in a circumferential direction can effectively be increased. Consequently, the permanent magnet volume of the proposed model is reduced by 81.4 %, compared with the benchmark IPM motor.

**キーワード**:自励式電磁石モータ,空間高調波,省レアアース,誘導電流,全波整流 **Keywords**: self-excitation motor, space harmonics, rare-earth-less, induced current, full-bridge rectifier

# 1. はじめに

電気自動車(EV)やハイブリッド車(HEV)のシステム 効率改善の観点から高効率な埋め込み永久磁石同期モータ (IPMSM)が主機用として一般的に用いられており、それに 用いられる磁石は高効率、小型化の要求から残留磁束密度 が高く,耐熱性を確保できる Dy や Tb を添加した高価なネ オジム磁石が採用されている<sup>(1)</sup>。加えて Dy や Tb といった 重希土類は産出地が偏在しており枯渇の懸念がある一方, 今後の HEV, EV の普及によって PMSM の生産台数が増加 すると資源供給の不安定性が益々顕在化すると考えられ る。そのようなコストと資源供給面の懸念に対して、近年 さまざまなレアアースフリーモータや磁石を電磁石に置き 換えた巻線界磁形モータの提案がされている。レアアース フリーモータとしては、板厚 0.1 mm の電磁鋼板を用いた SRM などが発表されているが、PMSM とは異なり、二次側 に界磁源を有していないため、一次側から供給する必要が あるので車載用で特に効率が重視される低負荷領域の効率 低下を免れない<sup>(2)</sup>。さらに 0.1 mm の電磁鋼板はコスト的に 不利である上、金型で打ち抜く生産面でも問題がある。ま た、巻線界磁モータとしては、フラックススイッチングモ ータなどが発表されているが、他励式の界磁のため、一次 側から DC 電流を供給する DC-DC コンバータが必要になる ことや、界磁巻線での銅損により一次側からの界磁エネル

ギーを全て二次側に供給できないという問題点を有している<sup>(3)</sup>。筆者らは上記のような問題に鑑み、従来損失となっていた空間高調波を界磁エネルギー源として活用するレアア ースフリーモータを既に提案した<sup>(4)</sup>。本稿では、同じコア体 積且つ、同じ励磁条件下でベンチマークの集中巻 IPMSM に 比肩する高トルク密度化の検討を行ったので報告する。

# 2. ベンチマークモータ(集中巻 IPMSM)

図1と表1に示す集中巻 IPMSM をベンチマークとして設 計する。このベンチマークモータを基準に、従来損失とな っていた空間高調波を界磁エネルギー源として回収し、自 励式電磁石トルクとして利用することで省レアアース化で きるモータについて検討する。





Fig. 3. Rotor winding connection diagram.

| - 妻 1 | エータ建元 |  |
|-------|-------|--|
| 衣I    | モーク谄兀 |  |

| Table 1. Specifications of motor.        |                         |  |
|------------------------------------------|-------------------------|--|
| Number of poles                          | 12                      |  |
| Number of slots                          | 18                      |  |
| Stator outer diameter                    | 200 mm                  |  |
| Rotor diameter                           | 138.6 mm                |  |
| Axial length of core                     | 54 mm                   |  |
| Air gap length                           | 0.7 mm                  |  |
| Maximum current                          | 273 A <sub>pk</sub>     |  |
| Winding resistance                       | 32.1 m $\Omega$ / phase |  |
| Number of coil-turn                      | 48                      |  |
| Winding connection                       | 6 parallel              |  |
| Remanence of magnets                     | 1.25 T (@ 293K)         |  |
| Coercivity of magnets (H <sub>cj</sub> ) | 1989 kA/m (@ 293K)      |  |
| Thickness of core steel plate            | 0.35 mm                 |  |

# 3. 従来モデル

〈3・1〉トルク性能 図2に従来モデルを示し、図3に 従来モデルのロータ巻線結線図を示す。従来モデルのステ ータ形状はベンチマークと共通であり、ロータ磁気回路以 外のコアサイズや励磁条件などは表 1 に示すベンチマーク と共通である。図4に従来モデルの1000 r/min と 2000 r/min 時の正側誘導電流を示し、図 5 に従来モデルとベンチマー クモデルの定トルク領域における MTPA 制御且つ最大電流 時のトルク比較を示す。本モータは空間高調波がロータ巻 線に鎖交することで発生する誘導電流を全波整流して界磁 エネルギー源として活用しているため、図4に示すように 回転速度に応じて誘導電流が増減する。すなわち、ファラ デーの法則に従い, 1000 r/min から 2000 r/min に回転速度が 増加したとき空間高調波が鎖交するロータ巻線の誘起電圧 が増加するため、誘導電流が増加し、結果として自励式電 磁石トルクも増加して図 5 に示すように総合トルクの増加 に繋がる。図5より,2000 r/min の定常状態時はベンチマー クに匹敵するトルクであるが、1000 r/min では定常時の平均 トルクがベンチマークよりも約25%低い。車載用モータの 場合、市街地走行時は低回転域でのトルク使用割合が高い ため、この差は燃費悪化に直結する。

**(3・2) 磁気回路改善点** 図 6(a)に図 5 の定常状態にお ける従来モデルの磁束密度分布と磁束線図を示し,図 6(b)



図4 従来モデルの正側誘導電流比較





Fig. 5. Torque characteristics of benchmark and conventional.



にベンチマークの結果を示す。なお、回転方向は CCW であ る。また、ベンチマークにおいて磁石軸を d 軸と定義し、 従来モデルにおいては誘導極を d 軸, ロータ突極部を q 軸 と定義する。両図を比較すると、同じステータとロータの 位置関係のときにベンチマークは、q軸に設けたトリムの高 い磁気抵抗部を避けながらロータに鎖交することで周方向 電磁力が発生し且つ、磁石磁束と電機子磁束の電機子反作 用により周方向電磁力が発生している。一方、従来モデル は、 ロータ突極部に自励式電磁石を形成するコイルを配置 し, d 軸の誘導極は主磁路とは磁気的に独立しており、トル クを発生しない構造である。そのため、自励式電磁石で磁 化した突極部でのみ周方向電磁力が発生するのでトルク発 生面がベンチマークよりも小さい。1000 r/min 時でもベンチ マーク相当のトルク密度を実現するためには、電機子反作 用により周方向電磁力が発生する構造とし、トルク発生面 も増やす必要がある。

### 4. 改良モデル

〈4·1〉 構造 図7に改良モデルを示す。従来モデルに 対し,磁気的に独立していた誘導極と主磁路を形成するロ ータ間に永久磁石(ベンチマークと同じエネルギー積の磁 石)を挟み込んだ構造である。磁石の磁化方向は、誘導極 に鎖交した電機子磁束に対して対向する方向に磁化方向を 設定しており、誘導極に鎖交した電機子磁束に対して磁石 磁束で磁気遮蔽を行って電機子反作用を生じさせ、周方向 電磁力を発生させている。すなわち、従来の誘導極の空間 高調波エネルギー回収の役割に加えて、永久磁石で磁気遮 蔽することで周方向電磁力の発生によりトルクも生じさせ る役割も付加している。図 8 に改良モデルの磁束密度分布 と磁束線図を示す。図 6(a)の従来モデルと比較すると,誘導 極に鎖交した電機子磁束が永久磁石の磁石磁束による磁気 遮蔽でステータに鎖交する方向に磁束が流れ、誘導極でも 周方向電磁力を発生できていることがわかる。図 9 に本モ ータの主な界磁エネルギー源となる第3次空間高調波ベク トル分布と第3次空間高調波の磁束線を示す。図9より誘 導極に第 3 次空間高調波が効果的に鎖交しており,誘導極 とロータ間に永久磁石を挟み込んだ構造としても誘導極へ の空間高調波の鎖交に対して悪影響がないことが確認でき る。

〈4・2〉トルク性能 図10に図5と同様の条件下で改良 モデルのトルクを求めてベンチマークとトルク比較した結 果を示す。同図より、1000 r/min ではベンチマークよりも約 8.2 %定常時の平均トルクが低いが、図5の従来モデルに比 べるとベンチマークに比肩するトルク密度へと大幅な向上 を達成できていることがわかる。2000 r/min においては、ベ ンチマークよりも高トルク密度化を達成している。加えて、 ベンチマークのトルクリプル 12.8 %に対し、改良モデルは 18.2 %で依然トルクリプルが大きいが、従来モデルの 36.5 % に対しては大幅にトルクリプルを低減していることが確認 できる。 なお、ベンチマークに対して磁石使用量は僅か







図8 以良モナルの磁東密度ハクトル分布







Fig. 9. Magnetic flux vector of 3<sup>rd</sup> space harmonics.







18.6%であり、省レアアース化を達成できている。

(4・3) β-T 特性 図 11 に 1000 r/min, 最大電流時でのベ ンチマークの電流位相と平均トルクの関係を示し, 図 12 に 改良モデルの定常状態時の結果を示す。ベンチマークは一 般的な IPMSM のため, リラクタンストルクとマグネットト ルクの 2 つのトルクを合成出力し, 電流位相が約 30 deg で 最大トルクが得られる。一方, 改良モデルは, リラクタン ストルクとマグネットトルクに加え, 自励式電磁石トルク も加わった 3 つのトルクを合成出力する。図 12 より, 自励 式電磁石トルクは d 軸に近づくほど増加していき, 電流位 相が約 90 deg から 100 deg 間で最大となる。そのため, 総合 トルクは 1000 r/min 時は電流位相が約 60 deg で最大となる。

図 13 に改良モデルの 1000 r/min と 2000 r/min における最 大電流時の電流位相とトルクの関係を示す。両回転速度で の永久磁石渦電流損による磁石温度差でマグネットトルク に差が生じることと,鉄心の鉄損によるリラクタンストル ク差を無視すると回転速度によらずマグネットトルクとリ ラクタンストルクの β-T 特性は一定となる。一方,自励式電 磁石トルクは、3.1 項でも述べたとおり,周波数の関数とな るため,図 14 に示すように回転速度の増加とともに電磁石 トルクは増加する。したがって,総合トルクが最大となる 電流位相は,電磁石トルクに依存して進角していることが 確認できる。ここで,モータ回転速度の増加とともに増加





Fig. 13. Current phase  $\beta$ -torque characteristics of improved model at 1000 r/min and 2000 r/min.



図 14 ロータ突極部の磁気飽和 Fig. 14. Magnetic saturation of the rotor salient pole.

する総合トルクの上限は,図14に示すように電磁石コイル が巻かれているロータ突極部の磁気飽和により制約され る。

### 5. まとめ

本稿では、従来モデルに対して極少量の永久磁石を空間 高調波エネルギーを界磁エネルギーとして回収する誘導極 と主磁路を形成する突極ロータ間に挟み込む構造とするこ とで、低回転時でも一般的な IPMSM に比肩するトルク密度 を達成できる自励式電磁石モータを設計した。

今後は,1000 r/min 以下の極低回転域でのトルク密度向上 を検討するとともに実機試作を行い,性能評価をする予定 である。

文

献

- (1) Yoshinori Sato, Shigeaki Ishikawa, Takahito Okubo, Makoto Abe and Katsunori Tamai : "Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle", SAE Technical Paper 2011-01-0350, 2011, doi: 10.4271/2011-01-0350
- (2) 竹野・星野・千葉・竹本・小笠原:「HEV用 50kW SRM の高出力型 と高効率型の実験的特性比較」,電気学会産業応用, vol.Ⅲ, pp.407-412 (2011)
- (3) 桑原・小坂・鎌田・梶浦・松井:「HEV 駆動用巻線界磁形フラック ススイッチングモータの運転性能評価」,電気学会自動車研究会資料, VT-13-023 (2013)
- (4) 青山・野口「空間高調波を界磁エネルギー源とするレアアースフリ ーモータの基礎検討」, H25年度電気学会全国大会, no.5-051 (2013)