# Parameter Identification of IPM Motor Focusing on Current Norm Ji Xiang, Toshihiko Noguchi (Shizuoka University)

## 1. Introduction

This paper proposes a new approach to identify the *q*-axis inductance  $L_q$  of an interior permanent magnet synchronous motor (IPMSM) focusing on the current norm characteristic. The current norm depends on the mismatch of  $L_q$ , and the minimum or the maximum value of the current norm is obtained when the parameter is properly tuned. Using a simple method to search the minimum point of the current norm, it is possible to achieve the off-line parameter identification. This paper describes an improved technique to identify  $L_q$  of the motor, which introduces a P controller and a PI controller to the current loop of the field-oriented controller. The current norm characteristic is examined through computer simulations and experimental tests.

#### 2. Identification System

Fig.1 presents the proposed  $L_q$  identification technique. This identification system tunes  $\hat{L}_q$  in the decoupling controller. The P controller with a small gain is employed in the *d*-axis loop to get the current variation caused by the mismatch between  $\hat{L}_q$  and  $L_q$ . On the other hand, the PI control is used in the *q*-axis loop to reduce interference by the unidentified  $\hat{L}_d$  and  $\hat{\Psi}$ . The PI controller has the following time constant and loop gain to obtain the optimum response:

$$\tau_{q} = \frac{L_{q}}{R} \tag{1}$$

$$K_q = \omega_{cq} L_q \tag{2}$$

Setting  $i_d^* = 0$ ,  $i_d$ ,  $i_q$  and the current norm can be obtained as follows:

$$i_{d} = \frac{i_{q}^{*}K_{q}(1+s\tau_{q})\omega(L_{q}-\hat{L}_{q})}{(K_{q}+R)(K_{d}+R)\tau_{q}s}$$
(3)

$$i_q = \frac{i_q^* K_q (1 + s\tau_q) (R + K_d)}{(K_q + R) (K_d + R) \tau_q s}$$
(4)

$$i_n = \sqrt{i_d^2 + i_q^2} = \frac{i_q^* K_q (1 + \tau_q s) \sqrt{\omega^2 (L_q - \hat{L}_q)^2 + (R + K_d)^2}}{(K_q + R)(K_d + R)\tau_q s}$$
(5)

From (5), it is found that the current norm is varied by the mismatch between  $\hat{L}_q$  and  $L_q$ . The current norm has a convex parabola characteristic and has the minimum value when  $\hat{L}_q = L_q$ .

### 3. Simulation and Experimental Results

The proposed technique is tested through computer simulations using PSIM software and experimental tests with a real IPMSM shown in the Table1. It can be seen in Fig. 2 that when the speed is stable and  $\hat{L}_q$  is equal to a real value of  $L_q$ , the current norm becomes the minimum. While the mismatch between  $\hat{L}_q$  and  $L_q$  is observed, the current norm is greater than the minimum value.

| Table 1. Parameters of IPMSM.   |                |
|---------------------------------|----------------|
| Number of poles                 | 6              |
| Winding resistance              | 0.48 Ω         |
| Rated output power              | 1.5 kW         |
| Rated rotation speed            | 3000 r/min     |
| Damping coefficient             | 0.00019 Ns/rad |
| q-axis inductance               | 24.5 mH        |
| Range of q-axis inductance      | 22.5mH~36.0mH  |
| <i>d</i> -axis inductance       | 13.0 mH        |
| Setup <i>d</i> -axis inductance | 10.0 mH        |
| Field flux linkage              | 0.06737 Wb     |
| Setup field flux linkage        | 0.0 Wb         |
| Rotation speed                  | 320 r/min      |



Fig. 2. Current norm characteristics with respect to  $L_q$  mismatch.

#### 4. Conclusion

The current norm characteristic with respect to  $L_q$  mismatch has been confirmed. The experimental and simulation results show that the identification of  $L_q$  can be achieved by using the current norm characteristic.

#### References

 Ji Xiang and T. Noguchi, "Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Based on Current Norm," IEEJ IAS Conference Proceedings No. 3,70, pp. 315-318, Aug. 2012(in Japanese).

<sup>(2)</sup> Ji Xiang and T. Noguchi, "Offline Identification of q-axis Inductance in Interior Permanent Magnet Synchronous Motor Based on Relationship between Its Parameter Mismatch and Current Norm," IEEJ Conference Proceedings No. 4,129, pp. 225-226, Mar. 2013(in Japanese).