MOSFET 寄生容量の高速充放電によるスイッチング損失低減法

村田 宗洋* 野口 季彦(静岡大学)

Switching Loss Reduction by Means of High-Speed Charging and Discharging of MOSFET's Parasitic Capacitor Munehiro Murata^{*}, Toshihiko Noguchi (Shizuoka University)

This paper describes a switching-loss reduction of a MOSFET by using a switching assist circuit fed by a gate drive power supply. The proposed circuit allows fast charge and discharge of the parasitic output capacitor of the MOSFET. By applying the proposed circuit to a boost chopper, the recovery loss of the body diode can be reduced down to one-fifth. In the case of an application to a PWM half-bridge inverter, the total efficiency can be improved by 14.8 points in the low-load range owing to the reduction of the switching loss of the MOSFET.

キーワード: MOSFET, 高速スイッチング, スイッチング損, ターンオフ, ターンオン, 補助回路, インバータ (MOSFET, high-speed switching, switching loss, turn-off, turn-on, auxiliary circuit, inverter)

1. はじめに

今後,SiC (Silicon Carbide) -MOSFET に代表される新し い電力用半導体スイッチング素子が実用化され,パワーエ レクトロニクス分野へ広く普及すると予想されている。従 来のSi (Silicon)を基材とする電力用半導体スイッチング素 子と比べて,SiC-MOSFET は高耐圧,高温動作,高速スイ ッチング,低損失など数々の特長をもっており,電力変換 器のパワー密度を飛躍的に向上させる切札と期待されてい る。しかし,一般に MOSFET では低オン抵抗や大電流化に 伴って各種寄生容量が増加する傾向にあり,SiC素子ではそ の固有物性も相伴って,さらに寄生容量が増大すると考え られる。これにより,寄生入力容量や寄生出力容量の高速 充放電が妨げられ,本来有している高速スイッチング特性 を十分に発揮することが困難となる。

高速スイッチングを実現するためには、ターンオン時間 だけでなくターンオフ時間も短縮することが求められる。 ターンオン時間は寄生入力容量を高速に充電することによ り短縮することができる。従来採用されている手法として は、ゲート抵抗を小さくすることやゲート抵抗と並列にス ピードアップコンデンサを用いることが挙げられる。近年 では新しいゲート駆動回路の研究も行われており、筆者ら はインダクタインパルス重畳方式を用いた超高速スイッチ ングゲート駆動回路を提案した⁽¹⁾⁽²⁾。一方、ターンオフ時間 は寄生出力容量を充電する時間によって決定される。筆者 らは主回路の負荷素子と並列に負荷短絡形のスイッチング アシスト回路を設けることでターンオフ時間を短縮する手 法を提案した⁽³⁾。これは主回路に補助素子を設ける手法であ るため主回路の変更が必要となることと、寄生出力容量を 高速充電するために高 di/dt の電流を流すことによる電圧サ ージが問題となる。

また,高周波電力変換器では全体の損失におけるスイッ チング損の割合が大きくなる。特にインバータなどの電力 変換器では、デッドタイム期間中にスイッチング素子の寄 生出力容量を完全に充放電できない場合やボディダイオー ドがオンすることもあるため、スイッチング素子がターン オンする際にボディダイオードのリカバリ損失が発生する とともに、直流バスが短絡されて大電流がスイッチング素 子を通り大きな損失となる。リカバリ損失およびリカバリ 電流によるターンオン損失はリカバリアシスト回路を用い ることによって低減できる⁽⁴⁾。しかし、本手法では寄生出力 容量を充電するための短絡電流によるターンオン損失は低 減できない。

そこで筆者らは、ゲートドライブ電源を利用したスイッ チングアシスト回路を用いることで寄生出力容量を高速充 電してターンオフ時間を短縮し、リカバリ電流と寄生出力 容量の充電電流によるターンオン損失を低減する手法を提 案してきた⁽⁵⁾⁽⁶⁾。しかし、補助回路を用いた際のリカバリ損 失と補助回路の制御条件については詳しい報告を行なって いない。そこで、本稿ではダイオードのリカバリ損失低減 効果と MOSFET のドレイン電流の大きさと極性による補助 回路の制御条件を検討する。本提案回路は従来のゲートド ライブ回路を追加変更したものであり、主回路側の変更は 必要ない。また、寄生出力容量を充電するために尖頭値の

Fig. 2. Switching pattern of switching assist circuit.

高い電流を流す必要もないので電圧サージも問題とならな い。ここで述べる MOSFET のスイッチングアシストとは, ソフトスイッチングを目的とするものではなく, ハードス イッチングの dv/dt を高めて高速かつ高効率なスイッチング を可能にするものである。本提案回路を昇圧チョッパと PWM インバータに適用し,補助回路の効果を確認するため に実機検証を行なった。提案手法により寄生出力容量を高 速充放電することで昇圧チョッパでは最大でリカバリ損失 を従来回路の 1/5 に改善でき, PWM インバータでも軽負荷 領域においてリカバリ損失およびターンオン損失を低減す ることで 14.8 pt の効率改善を実験的に確認したので報告す る。

2. ゲートドライブ電源を利用したスイッチング アシスト回路

〈2・1〉 補助回路の構成 図1にゲートドライブ電源 を利用したスイッチングアシスト回路を示す。C1は主スイ ッチング素子である MOSFET の寄生出力容量を示してお り、スナバ回路ではない。補助回路はゲートドライブ電源 Ed1,補助ダイオード Dc1, Dc2,インダクタ Lc1,ツェナ ーダイオード ZD1,補助素子 Sc1から構成される。S1と Sc1 のソースが Ed1と共通であるため、S1と Sc1を単一のドラ イブ電源で駆動することができる。

Sc1 は高周波駆動が可能でスイッチング損が少ない寄生 容量の小さな素子を選ぶことが望ましい。また, Sc1 の耐圧 は S1 と同程度の素子,電流容量は S1 より小さい素子を使 用することができる。ZD1 は S1 がオンしているときに補助 回路から主回路に電流が流入するのを防ぐため, Dc1, Dc2 は主回路から補助回路に電流が逆流するのを防ぐために必 要である。ツェナーダイオードは 1 素子あたりの電流耐量 が小さいため, ZD1 は 3 並列に接続する。

〈2·2〉 補助回路の動作原理 インバータなどの電力

Fig. 3. Boost chopper with auxiliary circuit.

変換器の従来回路では主素子のドレイン電流 in が寄生出力 容量を充電する向きに流れていれば(以下,正極性),主ス イッチング素子にオフ信号が入力されたときターンオフが 開始される。このとき、寄生出力容量の充電時間は in と C1 の値によって決定され, in の値が小さいと充電に時間がか かりターンオフ時間が長くなる。インバータのように上下 アームをもつ構成の電力変換器では、上アームスイッチン グ素子がターンオフしないまま下アームのスイッチング素 子がオンすると、スイッチング素子が強制的にターンオフ されて直流バスを短絡して大電流が流れ大きなターンオン 損失が発生する。一方で、ソースからドレインに向かって in が流れている場合(以下,負極性)には,主素子にオフ 信号が入力されているにも関わらず MOSFET のボディダイ オード D1 がターンオンするため, C1 は一切充電されずタ ーンオフが完了しない。デッドタイムが終了し、下アーム の主素子がターンオンすると非常に高い dv/dt をもつ逆電圧 が D1 にかかるためリカバリ損失および直流バス短絡電流 によるターンオン損失が発生する。提案回路ではS1をオフ する直前までインダクタ Lcl にエネルギーを蓄えておき, S1 をオフした直後に Sc1 をターンオフすることでエネルギ ーを転送し、C1を高速充電することによって寄生出力容量 が充分に充電されない領域においても高速かつ高効率なス イッチングを実現する。図2 に補助回路のスイッチングパ ターンを示す。Model で S1 がオンしている期間中に Sc1 を オンすることによって Ed1→Dc1→Lc1→Sc1→Ed1 の経路で 電流が流れ Lc1 にエネルギーを蓄える。Mode2 で S1 がオフ した直後に Sc1 をオフすることによって Ed1→Dc1→Lc1→Dc2→ZD1→C1→Ed1の経路で電流を流し て高速に C1 を充電する。このとき、in が正極性であれば、 Lc1 に蓄えたエネルギーを全て C1 に転送することができ る。一方で、inが負極正である場合には、Sc1をオフしたと しても id が補助回路に流れ込み, Lc1 に流れている電流 ilc1 が一定値で流れ続けようとするために, idl と ikl の差分のエ ネルギーしか転送できない。また,充電にかかる時間はLc1 と寄生出力容量の共振周波数の1/4周期で決定される。その ため、従来回路を強制的にターンオフする際の dv/dt よりも 提案回路の dv/dt を低くできるため、リカバリ損失低減効果 も期待できる。しかし、寄生出力容量の充電電流とリカバ リ電流の分離が困難であるため MOSFET を用いてリカバリ 損失の評価を行なうことは困難である。

図5 負荷抵抗 800 Ω のときの実検結果拡大図

Fig. 5. Expanded views of experimental results at 800- Ω load resistance.

3. 実験による動作特性の検証

(3・1) 昇圧チョッパ リカバリ損失の解析を目的とし て提案補助回路を昇圧チョッパに適用した。図 3 に昇圧チ ョッパのダイオード D1 に提案回路を設けた構成を示す。上 述のように本来,提案する補助回路は MOSFET の D-S 間に 接続して使用するが,寄生出力容量の影響によりボディダ イオードのリカバリ損失評価が困難なため,ダイオードの A-K 間に接続して損失解析を行った。また,C1 は MOSFET の寄生出力容量を模擬したものである。

従来回路では、D1 に電流が流れている最中に昇圧動作の ためS2 がオンすると、C1 を充電する電流とともにD1 に逆 電圧がかかりCB→D1→S2→CB の経路でリカバリ電流が流 れ、それに伴うリカバリ損失が発生する。提案回路では、 S2 がオンする直前にLc1 に蓄えたエネルギーをC1 に転送 することにより、C1 を充電してD1 をオフさせる。このと きC1→D1→C1 の経路でリカバリ電流とそれに伴うリカバ リ損失が発生するが、dv/dt が抑制されるため、リカバリ電 流とリカバリ損失が低減できる。なお、ダイオードには負 極性の電流が流れるため(1)で表される $i_f \geq i_{lc1}$ の差分のエ ネルギーP_tが転送される。

$$P_t = \frac{1}{2}Lc1(i_{lc1}^2 - i_f^2)$$
(1)

提案した手法の有効性を確認するため、実機検証を行っ

Fig. 6. Experimental results at 200- Ω load resistance.

Fig. 7. Expanded views of experimental results at 200- Ω load resistance.

た。 $E1 \ge 100$ V, $E2 \ge 200$ V, S1にST 製 Y60NM60, D2 にST 製 TH8L06, ゲートドライブ電源 Ed1 ≥ 12 V, Sc1 に ST 製 P12NM60N, Dc1, Dc2 に Infineon 製 IDH12SG60, ZD1 にON Semiconductor 製 1N5349BG $\ge 3 \pm \overline{9}$, Lc1 に 12.4 μ H, C1 に 1500 pF のものを用いた。

従来回路および提案回路で駆動周波数を100 kHz, 主素子 と補助素子のデューティサイクルを 50 %として, 負荷素子 パラメータが 800 Ω-0.8 mH の場合の動作波形を図 4, 図 5 に、200 Ω-0.2 mH の場合の動作波形を図 6、図 7 に示す。 これらの図のifを比較すると、提案回路において D1 のリカ バリ電流が減少していることがわかる。これは、従来回路 においては S2 がオンしたときに D1 に高い dv/dt の逆電圧 がかかるのに対して,提案回路ではLc1 と C1+C2 の共振周 波数によって dv/dt が抑制されるためである。また、図5と 図7の提案回路のv,を比較すると、図5では補助回路によ って v, が完全に充電されているが,図7においては充電が 途中で終わっていることが確認できる。これは、負荷抵抗 の大きさによってダイオードに流れる電流が変わるため に、(1)に示すように Lc1 から C1 に転送できるエネルギー 量が変わったからである。また、負荷電力ーリカバリ電流 特性を図8に、負荷電力-リカバリ損失特性を図9に示す。 リカバリ損失は LeCroy 製 waveRunner 6050 で測定した vr と ifを用いて算出した。図8よりリカバリ電流, 図9より リカバリ損失がそれぞれ従来回路に比べて提案回路は低減 していることが確認できる。リカバリ損失は最大で1.1Wか

Fig. 8. Load-recovery current characteristic.

ら 0.2 W とおよそ 1/5 に低減することができた。これは, リ カバリ電流値が小さくなったことに加えて v, の dv/dt が低く なったことに起因する。なお,補助回路が出力する電流よ りダイオードに流れる電流が大きくなると,転送できるエ ネルギーが 0 となり補助回路の効果を得られない。一般に MOSFET のボディダイオードの特性はスイッチングダイオ ードに比べて悪く,提案回路を MOSFET に適用した場合に はさらなる効果が期待できる。

以上より,スイッチングアシスト回路用いてダイオード をオフする際のリカバリ損失低減効果について確認した。

(3・2) PWM ハーフブリッジインバータ PWM ハーフ ブリッジインバータにドレイン電流の大きさと極性による 制御条件を加味した補助回路を適用し,寄生出力容量充電 電流とリカバリ電流によるターンオン損失低減およびリカ バリ損失低減の効果を確認する。図 10 にハーフブリッジイ ンバータの S1 および S2 のドレインソース間に補助回路を 設けた提案回路を示す。前述のとおり C1 と C2 は主スイッ チング素子の寄生出力容量を表している。

インバータを PWM 動作させた場合, *i*_{d1} は負荷電流 *i*_L に よって決定される。*i*_L は基本波周波数で動作するのに対し て, S1 および S2 は基本波より十分に高いスイッチング周波 数で動作する。そのため、デッドタイム期間において *i*_{d1} が 正極性の場合と負極性の場合が存在し、両者において従来 回路と提案回路の動作を検討する必要がある。始めに、*i*_{d1} が正極性の場合を述べる。従来回路において、主素子のタ ーンオフ時間 *t*_{off} は負荷電流と寄生出力容量によって決定さ

図 10 補助回路つきハーフブリッジインバータ Fig. 10. Half-bridge inverter with auxiliary circuit.

(a) Polarity of *i_{d1}* is positive
 (b) Polarity of *i_{d1}* is negative
 図 11 従来回路における短絡電流の経路
 Fig. 11.Short-circuit current path of conventional circuit.

れ(2)で表される。

$$t_{off} = \frac{(C1+C2)(E1+E2)}{i_L}$$
(2)

そのため,負荷電流が小さいときには,寄生出力容量をデ ッドタイム期間内で充放電できず高速スイッチングが困難 となる。例えば、S1 のターンオフが完了しないまま、デッ ドタイム期間が終了し S2 がターンオンすると図 11(a)に示 すように C2 に蓄えられた電荷をすべて消費するとともに, C1 を強制的にターンオフするための直流バスを短絡する電 流が E1→C1→S2→E2→E1 の経路で流れ, S2 において過大 なターンオン損失が発生する。このとき、直流バスを短絡 する電流は数十 A にもなることに加え, G-S 間電圧が閾値 を超えた瞬間のオン抵抗は非常に高いものであるため短絡 電流によるターンオン損失がインバータ全体の主損失要因 となり得る。そこで、提案回路では S1 をオフした直後に Sc1 をオフすることによりゲートドライブ回路側から寄生出力 容量を十分に充電し、短絡電流を抑制することでターンオ ン損失の低減を実現する。このとき、Lc1のエネルギーは全 て寄生出力容量に転送できるが, i₁が大きければ補助回路が なくてもデッドタイム期間内にターンオフが完了するた め,補助回路を不用意に動作させれば効率を悪化させるだ けである。そこで, デッドタイム期間内に寄生出力容量を 十分に充電する負荷電流閾値を Ithp と定義し、負荷電流がこ

れを超える場合には、補助回路を動作させないようにする。 I_{thp} は(2)を書き直すことで(3)のように求めることができる。 なお t_{dead} はデッドタイムの長さである。

$$I_{thp} = \frac{(C1+C2)(E1+E2)}{t_{dead}}$$
(3)

次に, in が負極性の場合を説明する。正極性と同様に S1 が オフしてから S2 がオンするまでを考える。従来回路におい てデッドタイム期間では D1 がオンするため, C1 は一切充 電されず、ターンオフは完了しない。ターンオフしないま まデッドタイムが終了し, S2 がオンすると図 11(b)に示すよ うに C1 を充電する電流が流れると同時に、D1 に逆電圧が かかるため E1→D1→S2→E2→E1 の経路で流れるリカバリ 電流とそれに伴うリカバリ損失が発生する。なお、C1 は電 圧依存性をもち、D-S間電圧が充電されていないときのキャ パシタンスが非常に大きくなるため、寄生出力容量の充電 電流は大きな値となる。これらの短絡電流によって発生す るターンオン損失およびリカバリ損失によって従来回路の 効率は著しく悪化する。一方,提案回路では補助回路を用 いて C1 を充電すると同時に D1 をオフし、ターンオン損失 およびリカバリ損失を低減することで高効率な動作を期待 できる。前節で述べたように、負極性の場合には(1)で表さ れるエネルギーしか転送されないため、Pt=0となる負荷電 流閾値を Itm と定義して,負荷電流がこれを超える場合には 補助回路を動作させないようにする。Itm は(4)のように表さ

れ, tは補助回路のオン時間である。

$$I_{thn} = \frac{Ed1}{Lc1}t\tag{4}$$

提案した手法の有効性を確認するため、実機検証を行った。 入力電圧 E1 および E2 を 70 V, S1 および S2 には ST 製 Y60NM60 ($C_{oss} = 2000 \text{ pF}$),補助素子 Sc1 には ST 製 P12NM60,補助ダイオード Dc1 には infineon 製 IDH12S60C, 補助ダイオード Dc2 には infineon 製 D06S60, ツェナーダイ オード ZD1 には ON Semiconductor 製 1N5349BG を 3 並列, 補助インダクタ Lc1 には 4.5 μ H のものを用いた。下アーム の補助回路は上アームのものと同一である。また,(3)(4)よ り, $I_{thp} = 2.2 \text{ A}$, $I_{thn} = 5.3 \text{ A}$ とそれぞれ求められるが,前者 は寄生出力容量の電圧依存性のため,後者は補助ダイオー ドの電圧降下により計算値から若干乖離する。実験より, I_{thp} = 3 A, $I_{thn} = 4 \text{ A}$ と設定した。

従来回路および提案回路でスイッチング周波数を 100 kHz, 基本波周波数を1 kHz, デッドタイムを 250 ns, 負荷 素子パラメータを8Ω-1mH. Lc1 にエネルギーを蓄える時 間を2 µs として,変調率が0.2 の場合の動作波形を図12, 図13に示す。これらの図より、従来回路に比べて提案回路 において短絡電流が低減されていることが確認できる。こ れは,補助回路を用いることで寄生出力容量を高速充電す ると同時にボディダイオードをオフしているため、直流バ スを短絡する経路で電流が流れないためである。また、提 案回路では vest の振動が従来回路に比べて抑制されている ことも確認できる。これは提案回路において id の di/dt が抑 制されて, MOSFET の寄生インダクタンスにおける逆起電 力が発生しないためである。また、変調率が0.9の場合の動 作波形を図 14, 負荷電力―補助回路稼働率特性を図 15 に示 す。なお、ここでいう補助回路稼働率とは基本波一周期の 間で補助回路が動作している割合である。図14より設定し た負荷電流閾値によって補助回路の動作を間欠させている ことが確認できる。さらに、図15より負荷が重くなるにつ れて,補助回路稼働率が下がることが確認できる。これは, 重負荷領域では負荷電流の振幅が大きいために、補助回路 を動作させる必要がないからである。また、負荷電力と補 助回路の損失も含む総合効率を図 16 に示す。効率は

Fig. 15. Load power-utilization ratio characteristic.

YOKOGAWA 製 WT3000 を用いて主回路およびゲートドラ イブ電源の入力電力と主回路の出力電力を測定して算出し た。同図から読み取れるように、従来回路より提案回路の 方が高効率であり、14W出力時において効率は33.5%から 48.3 %と 14.8 pt 改善した。これは提案回路を適用すること によってターンオン損失およびリカバリ損失を低減できた ためであるが、詳しい損失分離は今後の課題である。なお、 従来回路が軽負荷時に非常に低効率であるのは、短絡電流 によるスイッチング損が支配的なためである。一般的に電 力変換器ではデッドタイムはスイッチング1周期の5%以 下にすることが望ましく, 100 kHz 駆動時では 500 ns 以下の デッドタイムが求められる⁽⁷⁾。100 kHz のような高周波で軽 負荷運転の場合, デッドタイム期間中に主素子寄生出力容 量の充放電が十分に行えないため、高速かつ高効率なスイ ッチングを実現するためには、本稿で提案したスイッチン グアシスト回路を用いた手法が有効である。また、ハーフ ブリッジインバータのような電力変換器における損失は、 導通損とスイッチング損の合計であり、従来回路と提案回 路では負荷電流が等しいため, 主素子の導通損はほぼ同じ であると考えられる。よって、従来回路と比べ提案回路の 方が効率改善できるのはスイッチング損が減少したためで あり,提案する手法はMHz級の高周波電力変換器において, 更に有効であると考えられる。

以上より, MOSFET のドレイン電流の大きさと極性によ る補助回路の制御条件およびスイッチング損低減による効 率向上について確認した。

4. まとめ

本稿では電力変換器の主スイッチング素子である MOSFET の寄生出力容量を高速に充放電するスイッチング アシスト回路について述べた。提案した補助回路を昇圧チ ョッパ, PWM ハーフブリッジインバータに適用して提案法 の有効性を確認した。

昇圧チョッパでは、ダイオードの逆電圧の dv/dt を抑制す ることでリカバリ電流を低減し、リカバリ損失を最大で 1/5 に改善できることを確認した。また、PWM ハーフブリッジ インバータでは直流バスの短絡電流を抑制し、スイッチン グ損を低減することで14 W 出力の軽負荷時に効率を 33.5 % から 48.3 %と最大 14.8 pt 改善できることを確認した。

本稿で提案したスイッチングアシスト回路を用いる手法 は MOSFET の寄生出力容量が大きい場合にさらに有効であ る。例えば、大電流化に対応するために MOSFET を並列駆 動する場合だけでなく、各種寄生容量が大きな低オン抵抗 の MOSFET を駆動する際に効果的である。

文 献

- M. Ishigaki and H. Fujita: "A Resonant Gate-Drive Circuit Capable of High-Frequency and High-Efficiency Operation", IEEJ Trans, vol. 127-D, no. 10, pp. 1090-1096 (2007) (in Japanese) 石垣将紀・藤田英明:「低損失・高周波動作可能な MOSFET 用共振 形ゲートドライブ回路」, 電学論 D, vol. 127, no. 10, pp. 1090-1096 (2007)
 T. Noguchi, S. Yajima, and H. Komatsu: "Development of Gate Drive
- (2) T. Noguchi, S. Yajima, and H. Komatsu: "Development of Gate Drive Circuit for Next-Generation Ultra High-Speed Switching Devices", IEEJ Trans., vol. 129-D, no. 1, pp. 46-52 (2009) (in Japanese) 野口季彦・矢島哲志・小松宏禎:「次世代超高速スイッチング素子ゲ 一ト駆動回路の開発」, 電学論 D, vol.129, no.1, pp. 46-52 (2009)
- (3) T. Noguchi and T. Mizuno: "High-Speed Switching Method of MOSFETs Using Switching Assist Circuit", IEEJ Trans., vol. 133-D, no. 12, pp. 1186-1192 (2013) (in Japanese)
 野口季彦・水野知博・村田宗洋:「スイッチングアシスト回路を用いた MOSFET の高速スイッチング法」,電学論 D, vol.133, no.12, pp.1186-1192 (2013)
- (4) 餅川宏・小山建夫:「小型・低損失インバータを実現する新回路技術」, 東芝レビュー2006 vol. 61, No. 11, pp. 32-35 (2006)
- (5) T. Noguchi and M. Murata: "High-Speed Switching Method of MOSFET Using Voltage Boost Auxiliary Circuit Fed by Gate Drive Power Supply -Applications to Chopper and Half-Bridge Inverter and Their Operation Characteristics-", INTERNATIONAL POWER ELECTRONICS CONFERENCE -ECCE ASIA- IPEC-Hiroshima, 20D1-4 (2014)
- (6) M. Murata and T. Noguchi: "High-Speed Switching Method of MOSFET Using Voltage Boost Auxiliary Circuit Fed by Gate Drive Power Supply - Application to Bidirectional Chopper and Its Operation Characteristics -", IEE-Japan Ann. Meet., 4-136, pp.230-231 (2014) (in Japanese) 村田宗洋・野口季彦:「ゲートドライブ電源昇圧補助回路を用いた MOSFET の高速スイッチング法-双方向チョッパへの適用と運転特 性-」,平成 26 年電気学会全国大会,4-136, pp.230-231 (2014)
- (7) K. Shirakawa, K. Wada, and T. Shimizu: "An Issue on 200 kHz Class High Frequency Switching of a PWM Inverter", IEEJ Proc. IAS Annual Conference, vol. 1, pp. 277-280 (2006) (in Japanese) 白川和博・和田圭二・清水敏久:「PWM インバータの 200 kHz 級高 周波スイッチングの課題」, 平成 18 年電気学会産業応用部門大会, vol. 1, pp. 277-280 (2006)