HEV 用磁石フリー磁気ギアモータの試作機設計

青山 真大(静岡大学/スズキ), 久保田 芳永* (スズキ), 野口 季彦, 本橋 勇人(静岡大学)

Prototype Design of Permanent-Magnet-Free Magnetic Geared Motor for HEV Application Masahiro Aoyama (Shizuoka University/SUZUKI Motor Corporation), Yoshihisa Kubota (SUZUKI Motor Corporation),

Toshihiko Noguchi, Yuto Motohashi (Shizuoka University)

This paper describes a magnetic geared motor in which magnetic flux variation at a differencial frequency between the stator rotating magnetic field and the rotor speed is effectively utilized for the field magnetization instead of the rare-earth permanent magnets. The operation principle of the self-excitation with a diode rectifier incorporated by the rotor winding circuit is discussed in the paper. A magnetic circuit design and a mechanical design of a downsized prototype were performed for the purpose of principle verification. In addition, the adjustable speed drive characteristics of the proposed motor are investigated by the FEM analysis.

キーワード:磁気ギアモータ,磁石フリー,巻線界磁,自己励磁,ダイオード整流,差分周波数 **Keywords**: magnetic geared motor, permanent-magnet-free, wound-field, self-excitation, diode rectifier, differencial frequency

1. はじめに

近年,パワースプリット式 HEV パワートレインの小型化 のために磁気ギアモータを用いたシステムが提案されてい る(1)(2)(3)。従来の遊星ギアとモータを組み合わせたシステム に対して二軸出力の磁気ギアモータを採用することで複合 機能化により部品点数を削減することができ、小型化、軽 量化、システム効率の向上を期待できる。しかし、ステー タ側の回転磁界とロータの回転周波数が非同期で駆動する 条件下では永久磁石(PM)に対する外部磁場の磁気変動が 大きくなり、高保磁力磁石を用いる必要や磁石渦電流損対 策が必要になる。それらの課題に鑑み、筆者らは損失増加 の主要因になっていた磁気ギアモータの非同期駆動(非同 期回転モード)に着目した自励式巻線界磁形磁気ギアモー タを提案した⁽⁴⁾。提案モータは誘導機の電磁誘導原理とダイ オード整流によって得られる励磁電流を利用することで磁 石フリー化を実現している⁽⁵⁾。現在,提案モータの自己励磁 動作を検証するために原理検証用試作機の設計と二軸制御 のための最適な制御モデル構築を進めている。本稿では, 原理検証用試作機の磁気回路設計と構造設計について報告 する。

2. 磁気回路設計

〈2・1〉インナーロータに鎖交する非同期回転磁界

測定環境の都合上,ステータコア外径がøl20mm,積厚が

(a) Magnetic flux density and flux lines.

Fig. 1. Magnetic flux density and its harmonic contents of solid inner-rotor without magnetic flux modulator.

(a) Magnetic flux density and flux lines.

Fig. 2. Magnetic flux density and its harmonic contents of solid inner-rotor with magnetic flux modulator.

49.5 mmの小型原理検証機を試作し、差分周波数でロータを 自己励磁することを検証する。コア外径の制約,冷却系, 最大トルク駆動時間から決定した電機子巻線の電流密度 (23 A_{ms}/mm²)の条件から,最大負荷時の磁気飽和を考慮し てステータは8極(4極対)と決定した。磁気変調形磁気ギ アモータのポールコンビネーションは(1)が成り立つように 選定する⁽¹⁾⁽²⁾⁽³⁾。また,共線図の関係からトルクは(2)が成り 立つ⁽¹⁾⁽²⁾⁽³⁾。

$$P_m \omega_m - P_{pm} \omega_{pm} = P_s \omega_s \tag{1}$$

$$T_s = -\frac{P_s}{P_m} T_m = \frac{P_s}{P_{pm}} T_{pm}$$
(2)

ここでの。はステータ回転磁界角速度, *ω* は変調子角速度, のpmはPMロータ角速度, Psはステータ極対数, Pmは変調子 の極数, Ppmは PM ロータ極対数であり, Tsはステータ反作 用トルク,T_mは変調子トルク,T_{pm}はPM ロータトルクであ る。上記の関係から一例として変調子の極数 Pm=12 とした とき, $P_s = 4$ であるから, $P_{pm} = 8$ となる。このポールコンビ ネーションを採用した場合のロータ鎖交磁束を図1と図2 に示す。まず、ソリッドロータを内包した分布巻ステータ により発生するギャップ磁束密度波形を調波解析した結果 を図1に示す。図1よりスロット高調波に起因する第11次 と第13次空間高調波等がギャップ磁束に重畳しているが比 較的正弦波に近い。次に,分布巻ステータとソリッドロー タ間に変調子(Pm = 12)を内包したときの変調子とソリッ ドロータ間のギャップ磁束密度波形を調波解析した結果を 図2に示す。図2より変調子のパーミアンス分布によりス テータの基本波回転磁界が磁気変調されて8次(Pm-Ps=8) の回転磁界が発生し、この8次の回転磁界と8極のPMロー タが同期して回転する。なお、磁気変調により16次(Pm+ P_s=16) も発生するが振幅が小さいため,一般に低次側の回 転磁界と PM ロータを同期させる⁽²⁾。一方, 図 2 で確認でき るように4次の回転磁界(4極対ステータの基本波回転磁界) もロータに鎖交するが、これは PM ロータと同期しないため 従来の PM ロータにとっては渦電流損を大幅に増加させる 主要因となる。提案するダイオード整流式巻線界磁形磁気 ギアモータは、この非同期周波数の磁束変動により誘導起 電力を得てダイオード整流により自励式電磁石を形成する。 これにより従来の磁気ギアモータと同様の動作原理で磁石 フリー化を実現することができる。

〈2・2〉ポールコンビネーションの検討 $P_s = 4$ の場合, 磁気飽和を考慮して下記の組み合わせが考えられる。

 $(P_s: P_{pm}: P_m) = (4:4:8), (4:6:10), (4:8:12)$ 上記の組み合わせにて従来の PM ロータタイプで磁気回路 設計を行った結果を図 3 に示す。なお、4 極対のステータは 共通とし、変調子の鉄心と空隙の比率は電磁界解析を通じ た平均出力トルクとトルクリプルの関係から 50 % (空隙と 鉄の比率が等しい状態)とした。図 4(a)に示すように (P_s :

(a) $P_s = 4$, $P_{pm} = 4$, $P_m = 8$. (b) $P_s = 4$, $P_{pm} = 6$, $P_m = 10$. (c) $P_s = 4$, $P_{pm} = 8$, $P_m = 12$.

 (a) Torque characteristics under stator 100 Hz in CW-direction and WF-rotor 100 Hz in CCW-direction.

(b) Main magnetic flux paths and torque direction at moment A of

4:4:8 slot combination.

(c) Main magnetic flux paths and torque direction at moment B of

(d) Main magnetic flux paths and torque direction at moment B of 4:6:10 slot combination.

Fig. 4. Torque delivery principle with respect to slot combinations.

 $P_{pm}: P_m$) = (4:4:8) の場合,トルクリプルが大幅に増加する。このポールコンビネーションの場合,図 4(b),(c)に示すように 2 つのロータ位置によってはトルク(周方向電磁力)が発生しない場合がある。一方,($P_s: P_{pm}: P_m$) = (4:6:10)の場合は図 4(d)に示すように常にトルク(周方向電磁力)が発生する。同様に紙面の都合上図示していないが($P_s: P_{pm}: P_m$) = (4:8:12)の場合も常にトルクが発生する。

次に, $(P_s: P_{pm}: P_m) = (4:6:10)$ と (4:8:12) の場合につ いて,変調子とソリッドロータ間のギャップ磁束密度波形 の調波解析した結果と差分周波数のロータ鎖交磁束分布を 比較した結果を図 5 に示す。同図より, $(P_s: P_{pm}: P_m) =$ (4:8:12) のほうが提案モータの界磁エネルギー源になるス テータ回転磁界とロータ回転速度の差分周波数で変動する 磁束振幅が大きく,ロータ表面磁束分布も比較的均等に分 布することが確認できる。よって試作機は $(P_s: P_{pm}: P_m) =$ (4:8:12) のポールコンビネーションを採用することとした。

〈2·3〉ロータ巻線整流回路の検討 提案モータは、図 6(a)に示すように差分周波数の磁束変動から誘導起電力を 発生させる誘導コイルとその誘導起電力を整流したのちに 界磁極を形成する界磁コイルをロータ突極部に備えた巻線 界磁形構造である。カソードコモン形ダイオードモジュー ルを利用してより効率的に誘導起電力を整流するため、ロ ータ巻線を開放状態とし各誘導コイルに発生する誘導起電 力の位相を考慮してコイル結線方法を決定した。図 6(b), (c) にロータ巻線を開放状態としたときに各誘導コイルに発生 する誘導起電力を示す。同図より、同相の誘導コイル同士 を直列接続し、逆相となる誘導コイル群をそれぞれカソー ドコモン形ダイオードモジュールで結線した。ロータ巻線 の銅損増加による界磁電流の低下を防ぐため, 図 7 に示す ようなロータ巻線整流回路結線とした。ロータコイルは, 図 8 に示すようにロータ巻線の絶縁保護と固定を兼ねたボ ビンを介してロータスロットに内包する構造であり、有効 断面積に対して占積率 62%で誘導コイルを 10T,界磁コイ ルを 11 T 巻いている。巻線抵抗値は誘導コイルが 79 $m\Omega$ /pole, 界磁コイルが47 m Ω /pole である。

〈2・4〉電磁界解析による性能予測 駆動モードの一例 として図9に示すようにエンジンに軸結合される WF ロー タ(巻線界磁ロータ)を,エンジン効率が良い 3000 r/min (ス テータから見て 200 Hz) で一定回転させた場合と, 5000 r/min (ステータから見て 333.3 Hz)で一定駆動させた場合を 検討する。ステータ励磁周波数を CW 方向から CCW 方向ま で最大負荷且つ,電流位相0deg(位相基準はロータ突極の d軸)の条件で変化させたときのドライブシャフトに直結し た変調子の可変速トルク特性を図 10 に示す。参考に図 3(c) に示す同じポールコンビネーションの PM ロータ形磁気ギ アモータの特性も示す。同図より、試作機は小径のため十 分なロータコイルスペースを確保できず従来形に対してト ルク特性が劣るが、フルモデルの場合は十分なロータスロ ット面積を確保できるためトルク差を縮小できると考えら れる。また、差分周波数の磁束変動を界磁エネルギー源と

(b) $P_s = 4$, $P_{pm} = 6$, $P_m = 10$. (c) $P_s = 4$, $P_{pm} = 8$, $P_m = 12$. Fig. 5. Harmonic contents of magnetic flux density in air-gap and magnetic flux distribution in differencial frequency.

(a) Cross section of proposed rare-earth-free magnetic geared motor.

(b) Induced voltage in induction coils I-1, I-2, I-3 and I-4.

(c) Induced voltage in induction coils I-5, I-6, I-7 and I-8.

Fig. 6. Proposed motor and induced voltage in each induction coil.

Fig. 7. Rotor winding connection using full-bridge rectifier. Fig. 8. Space factor of rotor windings

Fig. 12. Mechanical configuration of modulator.

したダイオード整流形磁気ギアモータの場合,ステータ回 転磁界とロータ回転速度差が小さくなるに従い,ロータ界 磁巻線における誘導起電力が低下する。しかし,HEV モー ドで駆動する場合は高速巡航の運転領域になり,必要なト ルクは比較的低くて済むためHEV システム全体を含めたシ ステム設計で改善の余地がある。一方,EV モード駆動の場 合,ステータ励磁周波数を従来のPM ロータ形よりも高くし て差分周波数による磁束変動を意図的に発生させる必要が あり,効率低下が懸念される。差分周波数の磁束変動が低 い駆動条件におけるトルク特性の改善は今後の課題であ る。

3. 原理検証用試作機の構造設計

全体構成は図 11 に示すようにステータに変調子 (outer-rotor) と WF ロータ (inner-rotor) を内包しており, 独立して駆動できる二軸出力構造となっている。変調子と WF ロータそれぞれの位置情報をレゾルバで取得し,(1)を用 いて算出したステータ角速度に電機子電流を同期させ制御 する。変調子は図 12 に示すような構造であり,空隙部分に PPS 樹脂バーを内包させてトルク伝達している。WF ロータ は図 13 に示すような構造であり,ロータコイルエンド上に スペーサーを介して整流回路用ダイオードを取り付ける。

Fig. 9. Collinear chart under constant-speed drive of WF-rotor at 200 Hz.

Fig. 11. Mechanical configuration (cross section).

Fig. 13. Mechanical configuration of WF-rotor.

4. まとめ

(

本稿では、磁石フリー磁気ギアモータの磁気回路と構造 設計について検討した。電磁界解析の結果から、ステータ コア外径が ϕ 120 mm の小型試作機では、($P_s: P_{pm}: P_m$) = (4:8:12)のポールコンビネーションが最適であることを明 らかにした。また、試作機の構造設計も行い、詳細な各部 寸法と部材を決定した。今後は、試作機による原理検証と 制御モデルの構築を進める予定である。

1)	Y. Takeuchi, H. Kato, M. Tago, S. Ogasawara and H. Sakai: "Operatin
	Principle and Control Method of the Magnetic Modulated Motor", IEEJ Annua
	Magting No. $5-041$ pp $73-74$ (2013)

献

文

- (2) M. Fukuoka, K. Nakamura, H. Kato and O. Ichinokura: "A Consideration of the Optimum Configuration of Flux-Modulated Type Dual-Axis Motor", *IEEJ Technical Meeting*, RM-13-141 (2013)
- (3) N. Niguchi and K. Hirata: "A Novel Magnetic-Geared Motor", Japan Society of Applied Electromagnetics and Machanics, Vol. 21, No. 2, pp. 110-115 (2013)
- (4) M. Aoyama, Y. Kubota and T. Noguchi: "Proposal of Rare-Earth-Free Brushless Wound-Field Magnetic Geared Motor for HEV Application", *IEEJ Annual Meeting*, No. 5-037, pp.68-69 (2015)
- (5) M. Aoyama, T. Noguchi: "Torque Performance Improvement with Modified Rotor Winding Circuit of Wound-Field Synchronous Motor Self-Excited by Space Harmonics", *IEEJ Trans. 1A*, Vol.134, No.12, pp.1038-1049 (2014)