HEV 用磁石フリーブラシレス巻線界磁形 磁気ギアモータの提案

青山 真大(静岡大学/スズキ), 久保田 芳永*(スズキ), 野口 季彦 (静岡大学)

Proposal of Rare-Earth-Free Brushless Wound-Field Magnetic Geared Motor for HEV Application Masahiro Aoyama (Shizuoka University/SUZUKI Motor Corporation), Yoshihisa Kubota (SUZUKI Motor Corporation), Toshihiko Noguchi (Shizuoka University)

1.はじめに

近年,パワースプリット式 HEV システムの小型化のため に磁気ギアモータを用いたシステムが提案されている(1)。従 来の遊星歯車とモータを組み合わせたシステムに対して二 軸出力の磁気ギアモータを採用することで複合機能化によ りコンポーネント数を減らすことができ、小型・軽量化・ システム効率の向上が期待されている。しかし、ステータ 側の回転磁界とロータの回転周波数が非同期で駆動する条 件下では永久磁石に対する外部磁場の磁気変動が大きくな り、高保磁力磁石を用いる必要や磁石渦電流損対策が必要 になる。更に磁気ギアモータのギア比の選定条件によって は磁石ロータを多極化する必要があり、多数の磁石を実装 することによる高コスト化という問題もある。本稿では, 上記のような問題に鑑み、従来技術で損失増加の主要因に なっていた磁気ギアモータの非同期駆動に着目し、誘導機 の電磁誘導原理と自励式巻線界磁技術を応用することで, 磁石を用いない自励式巻線界磁形磁気ギアモータを検討を したので報告する⁽²⁾。

2. 自励式巻線界磁形磁気ギアモータの原理

図1に従来の磁気ギアモータとHEVシステムへの応用を示す⁽¹⁾。同図(b)のように二軸駆動が可能なため,図2に示すように共線図関係が成り立つ。同図において*a*_sはステータ回転磁界角速度,*a*_mは変調子角速度,*a*_{pm}は PM ロータ 角速度,*P*_sはステータ極対数,*P*_{pm}は PM ロータ極対数であり、ギア比はポールコンビネーションにより決まる。PM ロータによる電機子鎖交磁束を(1)、変調子による磁束変動を (2)とおいたとき、ステータへ鎖交する磁束は(3)で表される。 すなわち、(4)の関係が成り立つ条件で励磁すれば PM ロー タと変調子を駆動することができる。また、トルクの関係 は*T*_sをステータ反作用トルク、*T*_mを変調子トルク、*T*_{pm}を PM ロータトルクとおいたとき(5)で表される。

$$\psi_{pm} = \cos\left(P_{pm}\,\omega_{pm}\,t\right) \tag{1}$$

$$\psi_m = \cos\left(P_m \,\,\omega_m \,t\right) \tag{2}$$

 (a) Conventional magnetic geared motor.
 (b) HEV system.
 図 1 従来の磁気ギアモータの径方向断面図と HEV システム

Fig. 1. Cross section of conventional magnetic geared motor and HEV system application.

図 2 磁気ギアモータを HEV システムに用いた共線図 Fig. 2. Collinear chart applied magnetic geared motor for HEV system.

$$\psi_{s} = \psi_{m} \cdot \psi_{pm}$$
$$= \frac{1}{2} \left\{ \cos \left(P_{m} \, \omega_{m} + P_{pm} \omega_{pm} \right) t - \cos \left(P_{m} \omega_{m} - P_{pm} \omega_{pm} \right) t \right\}^{(3)}$$

$$P_m \omega_m - P_{pm} \omega_{pm} = P_s \omega_s \tag{4}$$

$$T_s = -\frac{P_s}{P_m} T_m = \frac{P_s}{P_{pm}} T_{pm}$$
(5)

(4)よりステータ回転磁界とロータ回転速度は非同期のため、ロータに差分周波数の磁束変動が発生する。この差分 周波数の磁束変動を活用して、誘導機の電磁誘導原理とダ イオード整流による自己励磁技術を組み合わせることによ り PM ロータの永久磁石を自励式電磁石に置き換えること ができる。

自励式巻線界磁形磁気ギアモータの構造

図 3(a)に提案するモータの断面図を示す。従来の PM ロ ータに対して同じ極数の突極をもち、ロータスロット内に 非同期周波数が鎖交することで誘導電流を発生させるコイ ルと、整流された誘導電流により電磁石を形成する界磁コ イルを巻いた構造を有している。非同期周波数から有効な 界磁エネルギー源を得ることでロータ突極に電磁石を形成 する。誘導コイルと励磁コイルは図 3(b)に示すように全波 整流回路で機械角 90 deg ごとに結線されている。

4. 電磁界解析による運転特性の確認

非同期周波数を界磁エネルギー源とした自励式電磁石起 磁力による運転特性を把握するため,図 1(a)の従来モデル とロータ構造以外の磁気回路諸元を共通とし、同じ励磁条 件下で比較した。図4(a)に最大負荷時の変調子トルク(出 力軸)特性比較の結果を示す。電源電圧は 650 V, MTPA 制 御点で駆動している。図4(b)に示すようにエンジン出力軸 に接続される WF-rotor はエンジンの高効率動作点(300Hz) で固定し, 励磁周波数を-500 Hz から 585 Hz まで変化させ ている。磁気ギアモータは図2の共線図で速度が等しくな る動作点を除き、原理的にステータ回転磁界と PM ロータ が非同期駆動するためリラクタンストルクがほとんど利用 できず、SPM モータのような電流位相-トルク特性となる。 図4(a)より、ステータ回転磁界とロータ回転速度差が大き い領域では提案モータの方が大きなトルクを出力すること ができる。一方、周波数差が小さくなるに従いトルクが低 下するが、これは非同期周波数により発生する誘導電流を 界磁エネルギー源としているためである。

5. まとめ

本稿では、従来技術で損失増加の主要因となっていた磁 気ギアモータの非同期駆動に着目し、誘導機の電磁誘導原 理と自励式巻線界磁技術を応用することで磁石を用いない 新しい自励式巻線界磁形磁気ギアモータを提案した。電磁 界解析の結果、非同期周波数を界磁エネルギー源として自 励することで従来の永久磁石式磁気ギアモータと同様にト ルクを発生できることを明らかにした。今後、トルクが低 い領域において文献(2)の空間高調波による自励技術を組み 合わせることでトルク向上の検討を進める所存である。

文 献

- M. Fukuoka, K. Nakamura, H. Kato, O. Ichinokura: "A Consideration of the Optimum Configuration of Flux-Modulated type Dual-Axis Motor", *IEEJ Technical Meeting*, RM-13-141 (2013)
 M. Aoyama, T. Noguchi: "Torque Performance Improvement with Modified Rotor Winding Circuit of Wound-Field Synchronous Motor Self-Excited by Space Harmonics", *IEEJ Trans. IA*, Vol.134, No.12, pp.1038-1049 (2014)

(b) Rotor winding connection using full-bridge rectifier. 図3 提案する磁気ギアモータ

Fig. 3. Proposed magnetic geared motor.

Difference of electrical angular velocity between stator and rotor (rad/s) 5000 2300 1800 400 ____Proposed 350 -Conventional 300 250 Torque (Nm) 200 150 100 50 0-4000 -3000 -2000 -1000 2000 0 1000 3000 4000 Electrical angular velocity of stator (rad/s) Adjustable speed drive characteristics. (a)

Collinear chart under constant-speed drive of (\mathbf{b}) WF-rotor at 300Hz

図4 最大負荷時の変調子トルク特性比較 Fig. 4. Adjustable speed drive characteristics of modulator torque under full-load