デュアルインバータシステムにおける 同相同時スイッチング動作の補償法 _{大音 慶明*, 野口 季彦 (静岡大学), 笹谷 卓也 (株式会社デンソー)}

Compensation of Simultaneous Same Phase Switching Operation in Dual Inverter System Yoshiaki Ohto, Toshihiko Noguchi (Shizuoka University), Takanari Sasaya (Denso Corporation)

1. はじめに

近年,ハイブリッド車の二酸化炭素排出量低減を目的と した燃費向上や自動運転技術に注目が集まっている。しか し,現行のハイブリッド車の多くは双方向チョッパにより バッテリー電圧を昇圧して2レベルインバータを動作させ, 高電圧 PM モータを駆動する構成である。そのため,モー タの巻線間に形成される電圧波形は3レベルになりマルチ レベルに対して dv/dt が大きく,THD や伝導ノイズ・放射 ノイズの点で不利である。また,昇圧チョッパとインバー タのうち一方でも故障すると,モータが駆動できなくなり フェールセーフの点でも問題がある。そこで,筆者らはバ ッテリーとキャパシタを直流バスにもつデュアルインバー タ方式を検討してきた。

本方式では, 巻線間にマルチレベルの電圧波形を形成で き、またフェールセーフの点でも有利である。ただし、直 流バスのキャパシタ電圧を一定に制御しながら、モータの 巻線間にマルチレベル波形を形成しなければならない。ま た、キャパシタを充電するスイッチングシーケンスには左 右のインバータの同相を同時オン、同時オフするシーケン スが含まれる。これまでの検討により、キャパシタ充電シ ーケンスのデッドタイム期間中に誤差電圧ベクトルが発生 しマルチレベル波形形成に悪影響を及ぼすことがわかった (1)。この対策として両インバータのデッドタイムを同時では なく順番に挿入する方法が紹介されている(2)。しかし、この 方法では IGBT のターンオン, ターンオフ時間の差やダイ オードのリカバリー回復時間が考慮されておらず、依然と して誤差電圧が発生する可能性がある(3)。そこで本稿では, ある相電流の範囲において同時スイッチング時のスイッチ ング時間の差を測定し、この誤差を補償したときの効果を 実機検証によって確認したので報告する。

2. 回路構成

Fig. 1 にオープンエンド巻線モータを駆動するデュアル インバータ方式を示す。検討回路では、左側のインバータ を INV1,右側のインバータを INV2 と呼び、INV2 の直流 バスのバッテリーをキャパシタに置き換えている。デュア ルインバータが出力可能な電圧ベクトルには冗長性があり、

Fig. 2. Error voltage vector generated during dead time in simultaneous switching of same phase.

Table 1.	Generation	of dead	time e	eliminating	error vectors.

State	INV1		INV2		Diana Valtana
	Up	Un	Up	Un	Phase voltage
#1	1	0	1	0	Vdc1-Vdc2
#2	1	0	0	0	Vdc1-Vdc2
#3	0	0	0	1	0
#4	0	1	0	1	0

特定の電圧ベクトルを異なる複数のスイッチングモードで 出力できる。したがって、INV2のキャパシタを適切に充放 電するモードを選択することで、モータにマルチレベル電 圧波形を形成しつつ INV2のキャパシタ電圧を一定に制御 することが可能になる。本論文では、スイッチング状態を (u1, v1, w1)(u2, v2, w2)'と表し、各レグを相補的にスイッチ ングさせる。このとき、各相の上アームが ON している状 態を 1, OFF している状態を 0 と表す。

3. デッドタイム期間中の誤差電圧ベクトル

キャパシタ充電シーケンスでは、両方のインバータの同 相を同時オン、オフするシーケンスが含まれる。例えば、 Fig. 2 に示すように両インバータの上アームがオンしてい る状態 A から両インバータの下アームがオンしている状態 B ヘスイッチングする場合を考える。このとき、デッドタ イム期間中のスイッチングモードは電流方向によって決定 されるため、一方のインバータは「1」、他方のインバータ は「0」となり意図しない誤差電圧ベクトルが発生する。こ の対策として、Table 1 に示すように両インバータのデッド タイムを順番に挿入する方法がある。Table 1 では、両イン バータの上アームがオンしている状態#1の後,電流が流れ 込む側のインバータにデッドタイムを生成する(状態#2)。 このとき、デッドタイム期間中のレグは上アームのダイオ ードによってオンするためインバータは「1」を維持する。 そして、状態#2のデッドタイム終了と同時に他方のインバ ータのデッドタイムを開始する(状態#3)。このとき、先に デッドタイムを終えたレグは「0」になっており、デッドタ イム期間中のレグは下アームのダイオードでオンするため インバータは「0」になる。このようにして左右のインバー タのデッドタイムを順に生成することで、デッドタイム期 間中に誤差電圧を発生させることなくデュアルインバータ の同時スイッチングが可能になる(状態#4)。しかし, Fig. 3に示すように状態#2から状態#3へ切り換わる際に生じる わずかなスイッチング素子の切り換わり時間の差によって 誤差電圧はなおも生じる。

4. 実機検証結果

実機検証では、1 kW のテストモータを 300 r/min で回転 させ、これを5 kW のインバータ2台で制御する。INV1 の バッテリー電圧を 300 V, INV2 のキャパシタ電圧指令値を 150±5 V とし、同時スイッチングが頻繁に行われる低変調 率時のキャパシタ充電モードに注目し、U 相電流が-2~2 A の範囲で U 相のスイッチングの切り換わり時間の差を測定 した結果を Fig. 4 に示す。Fig. 4 は両インバータの同相が同 時オン、同時オフする場合の INV1 に対する INV2 のスイッ チングの遅れを縦軸にとり、相電流を横軸としている。ま た、相電流は INV1 から INV2 へ向かう方向を正としている。

例えば、Table 1 に示した同時スイッチングは、Fig. 4 中の 相電流が正のときの同時オフにあたる。ここで、Table 1 の 状態#2 と状態#3 の切り換わりを考えるため、INV1 の IGBT のターンオフ時間を toff1、INV2 の IGBT のターンオン時間 を ton2、リカバリー回復時間を trr2 とおく。INV1 では IGBT がオフした後にダイオードがオンし、INV2 ではダイオード がオフした後に IGBT がオンする。したがって、相電流ノ ルムが大きいときはダイオードのリカバリー回復時間も長 くなるため、toff1 < trr2 + ton2 となり INV1 のスイッチング 時間は INV2 より短くなる。また、相電流ノルムが小さいと きはリカバリー回復時間が短いため toff1 > trr2 + ton2 とな り、INV1 のスイッチング時間が INV2 よりも長くなると考 えられる。

従来法と補償を施した提案法について、モータ巻線間に 形成される電圧波形を Fig. 5 に示す。同時スイッチングが 頻繁に行われるキャパシタ充電モードを見ると、提案法で はデッドタイム期間中の誤差電圧ベクトルを回避すること ができており、巻線間に形成される電圧波形の d v/dt を約

Fig. 3. Error voltage vector during dead time with conventional method.

Fig. 4. Current dependency of switching timing.

60%低減することができた。しかし、依然として電圧波形 形成には問題はあり、これは共振によるものだと考えてい る。

5. まとめ

デュアルインバータの同時スイッチング時に必要なデッド タイム挿入法に対して補償が必要であることを示し、本補 償法によってモータ巻線間に形成される電圧波形の dvdt が約 60%低減することを実験的に明らかにした。

文 献

 (1) 大音・野口・笹谷:「オープンエンド巻線 PM モータを駆動 するデュアルインバータの空間ベクトル変調」電気学会研究会 資料 MG/MD/LD 合同研究会, pp. 23-28 (2017)

(2) 水越・芳賀:「デュアルインバータ駆動オープン巻線誘導機の低変調率時における電圧波形改善法」平成 29 年電気学会産 業応用部門大会論文集, no. 3-51, pp. 257-260 (2017)

 (3) 陳・飯嶋・磯部・只野・川波・寺園:「Dual Active Bridge コンバータのデッドタイム最適化に関する実験的検討」 電気学 会全国大会論文集, no. 4-107 (2016)