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The dual inverter drive system feeding an open-end winding permanent magnet (PM) motor has been studied for
developing autopilot technologies of hybrid vehicles. Autopilot systems require fault-tolerant functions, which enable
it to continue to drive the motor even if some failure occurs in the motor drive system. The fault-tolerant function of a
dual inverter drive system, which assumes that the DC-bus battery power source of the dual inverter drive system has
failed, is discussed in this paper. In the dual inverter drive system that is considered, both the inverters have a capacitor
in parallel with a battery across each DC-bus. The capacitor drives the motor continuously even if the DC-bus battery
has failed. The inverter, in which the DC-bus battery has failed, is operated with the capacitor instead of the failed
battery. It is required to both control the capacitor voltage at a constant value and simultaneously generate multilevel
voltage waveforms across the motor windings with the space vector modulation (SVM). In this paper, the fault-tolerant
function of the DC-bus battery in a dual inverter drive system is proposed, and its operation characteristics are examined
through several experiments and compared with those of a normal system.
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1. Introduction

In recent years, autopilot technologies and mileage im-
provement techniques of hybrid vehicles are focused on.
Many of the current hybrid vehicles drive a high-voltage
permanent magnet (PM) motor with the combination of a
bidirectional chopper and a two-level inverter. Therefore,
it is difficult to improve the efficiency of the current system
due to the bidirectional chopper where large current flow for
the voltage boost. The current system also cannot continue
to drive the motor if either the chopper or the inverter has
failed. And, the line-to-line voltage of the motor is a three-
level waveform, which may cause deterioration of the total
harmonic distortion (THD), conduction noise, and radiation
noise. Therefore, the dual inverter drive system, where two
2-level inverters feed an open-end winding PM motor, has
been focused on (1)–(5). The dual inverter drive system is ex-
pected to improve the efficiency of the system, because the
system can generate the multilevel voltage waveforms across
the motor windings by adding the voltages of the two invert-
ers, and it is not required any voltage boosting chopper. In
particular, the dual inverter drive system, where the DC-bus
battery of one of the inverters is replaced with a capacitor, has
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been studied (6)–(16). The dual inverter drive system can achieve
several fault-tolerant functions and also can output multilevel
voltage waveforms across the motor windings. The fault-
tolerant function means that the system can continue to drive
the motor even if some failure occurs in the system. So far,
the fault-tolerant techniques of inverter switching device have
been studied, however, the fault-tolerant technique of the DC-
bus battery has not been studied in dual inverter drive sys-
tem (17)–(19).

The dual inverter drive system where both the inverters
have a battery and a capacitor in parallel across each DC-bus
is studied, and its fault-tolerant function of the DC-bus bat-
tery is proposed in this paper. The proposed fault-tolerant
function can continue to drive the motor even if the DC-
bus battery of the dual inverter drive system has failed, be-
cause the failure-side inverter is operated with the capacitor
instead of the failed battery. In the case, it is necessary to
control the capacitor voltage constantly, generating the mul-
tilevel voltage waveforms across the motor windings by the
phase difference of the fundamental voltage components be-
tween the two inverters (10) (11). In the proposed method, the
space vector modulation (SVM) is employed and the redun-
dancy of the switching states of the dual inverter drive system
is focused on. In this paper, the dual inverter drive system
which has been studied by authors is adopted for the fault-
tolerant function of the DC-bus battery (20), and the operation
characteristics are examined through additional experimental
tests to compare the operation characteristics of the normal-
condition and the failure-condition.

2. Configuration of Dual Inverter Drive System

Figure 1 shows a circuit diagram of the conventional motor

c© 2019 The Institute of Electrical Engineers of Japan. 953



Fault-Tolerant Function of A Dual Inverter Drive System（Yoshiaki Oto et al.）

Fig. 1. Conventional motor drive system of hybrid vehi-
cles with single inverter drive system

Fig. 2. Studied motor drive system of hybrid vehicles
with dual inverter drive system

Fig. 3. Principle of voltage vector generation of dual in-
verter drive system

drive system of hybrid vehicles which consists of a bidirec-
tional chopper, a single two-level inverter, and a three-phase
PM motor with a neutral-point inside of the motor. Fig-
ure 2 shows the dual inverter drive system studied in this
paper, where the left-hand side and right-hand side inverters
are called INV1 and INV2, respectively. Both the inverters
have a capacitor in parallel with a battery across each DC-
bus. Each leg of both the inverters is complementary oper-
ated, and the combination of the switching states is expressed
as (u1, v1, w1) (u2, v2, w2)’, where the switching state “1”
means that the upper arm is turned on and the “0” means the
opposite. The studied dual inverter drive system has the ad-
vantages of generating the multilevel voltage waveforms and
utilizing the redundancy of the switching states. And also, the
studied system does not require any voltage boost power con-
verter such as the bidirectional chopper, however, the inverter
counts and the DC-bus power source counts are increased,
compared with the conventional single inverter motor drive
system.

The dual inverter drive system can output the voltage vec-
tor by adding the voltage vectors generated with the INV1
and the INV2 as shown in Fig. 3, therefore, the system can
generate the multilevel voltage waveforms across the motor
windings. The multilevel voltage waveform generation can
reduce the dv/dt and the harmonic component rate of the out-
put voltage waveforms, which results in the improvement of
the THD. It is expected to reduce the copper and the iron
losses as a result of the improvement of the THD of the out-
put multilevel voltage waveforms and is expected to reduce
the conduction and the radiation noises as a result of the

Fig. 4. Redundant switching states of normal-condition
dual inverter drive system enlarged from 0 to 60 degree

(a) Open-circuit failure of switching device of upper arm in W-phase of INV2.

(b) Short-circuit failure of switching device of upper arm in W-phase of INV2.

Fig. 5. Conventional fault-tolerant functions of one of
inverter switching devices

reduction of the dv/dt. The dual inverter drive system also
has the redundancy in the switching states, which means that
particular voltage vectors can be generated to the motor with
the several different redundant switching states as shown in
Fig. 4. The studied dual inverter drive system can achieve the
proposed fault-tolerant functions with the redundancy of the
switching states with the SVM.

The conventional fault-tolerant function of one of the in-
verter switching devices has been studied (17)–(19). The failure-
side inverter where one of the inverter switching devices has
failed makes the neutral-point of the motor by shorting the
normal-condition arms as shown in Fig. 5, that is, the failed
inverter keeps the switching state either (000) or (111). The
fault-tolerant functions of the switching device of the upper
arm in the U-phase of the INV2 is in the open-circuit failure
and the short-circuit failure are shown in Figs. 5(a) and (b),
respectively. The conventional fault-tolerant function makes
it possible that the studied dual inverter drive system can con-
tinue to operate the motor as a single inverter motor drive sys-
tem, even if one of the inverter switching devices has failed.
The conventional function also may achieve the fault toler-
ance of the DC-bus battery as the single inverter drive system
by making the short circuit with the inverter whose DC-bus
battery has failed. On the other hand, the proposed fault-
tolerant function is operated as the dual inverter system by
utilizing the capacitor voltage control with the space vector
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Fig. 6. Proposed fault-tolerant function of DC-bus bat-
tery of INV2

modulation. Therefore, the proposed function is expected to
improve the THD of the output voltage waveforms, that is,
to reduce harmonic losses because the proposed function can
generate the multilevel voltage waveforms across the motor
windings.

3. Proposed Fault-Tolerant Function of DC-Bus
Battery with SVM

The fault-tolerant function of DC-bus battery is proposed
in this paper, which is achieved with the capacitor voltage
control across the DC-bus of the failed inverter. Figure 6
is assumed that the proposed fault-tolerant function of the
DC-bus battery source of INV2. The fault detection of the
DC-bus battery can be achieved with the current and volt-
age sensors in the system. The over current of the battery
can be detected with the current sensor of the DC-bus. And,
the separation of the battery can be detected with the voltage
sensors which is in the battery management system of the
battery. Then, the separation of the DC-bus battery can be
achieved with the electromagnetic contactor of the DC-bus.
In the case, the failure-side inverter is operated with the ca-
pacitor, which is connected in parallel to the battery across
the DC-bus. In the proposed fault-tolerant function, it is nec-
essary both to generate the multilevel voltage waveforms to
the motor and simultaneously to control the capacitor volt-
age across the DC-bus of the failure-side inverter constantly.
As described before, the dual inverter drive system has the
redundancy in the switching states, which makes it possible
to generate particular voltage vectors with the several differ-
ent redundant states. The capacitor charging or discharging
modes of the each switching state can be calculated by the
directions of the motor phase currents. Both of the capac-
itor voltage control of the failed inverter and the multilevel
voltage waveform generation can be achieved with the SVM
by selecting the appropriate switching state in the redundant
states, which charges or discharges the capacitor voltage ap-
propriately as shown in Fig. 7. The SVM is employed to oper-
ate the proposed fault-tolerant function, because the switch-
ing sequence can be designed flexibly in the SVM.

The 1:0.5 voltage ratio is employed to utilize the redun-
dancy of the switching states in the proposed fault-tolerant
function, which means that the capacitor voltage across the
DC-bus of the failed inverter is regulated at a half of the bat-
tery voltage of the normal-condition inverter. The relation-
ship between the output voltage vectors from 0 to 60 degree
and the capacitor charging/discharging modes in the steady-
state is shown in Fig. 8. As shown in the figure, both the
capacitor charging and discharging modes can be used re-
dundantly in particular redundant switching state in case of
the 1:0.5 DC-bus voltage ratio, on the other hand either the

Fig. 7. Simultaneous control of multilevel voltage
waveform generation and capacitor voltage across DC-
bus of failure-side inverter with SVM

(a) Dual inverter with 1:1 DC-bus
voltage ratio.

(b) Dual inverter with 1:0.5 DC-
bus voltage ratio.

Fig. 8. Relationship between output voltage vectors
from 0 to 60 degree and capacitor charging/discharging
modes in steady state

capacitor charging or discharging mode can be used in par-
ticular redundant states in case of the 1:1 DC-bus voltage ra-
tio. That is why the 1:0.5 DC-bus voltage ratio is employed,
and the capacitor voltage of the failed inverter should be con-
trolled at a half of the DC-bus battery voltage of the normal-
condition inverter in the proposed fault-tolerant function.

The modulation-index m is also indicated in Fig. 8. The
dual inverter system can generate the voltage vectors by
adding the voltages of the two inverters. However, the pro-
posed failure-condition system cannot generate the voltage
vectors in m > 0.5, because the system is required to achieve
both the capacitor voltage control and the voltage waveform
generation to the motor at the same time. Therefore, the max-
imum motor rotating speed of the proposed failure-condition
system is limited to a half of the normal-condition system.
On the other hand, the proposed failure-condition system is
expected to improve the THD of the output voltage wave-
forms because the system can generate the multilevel voltage
waveforms across the motor windings. The proposed failure-
condition system can generate the voltage vectors with a half
amplitude of the normal-condition system in m < 0.25, that
is, with the closer amplitude to the voltage reference than
the normal-condition. Therefore, the harmonic content rate
of the output voltage waveforms and the harmonic losses in
the failure-condition system are reduced in m < 0.25, which
result in the improvement of the THD of the output volt-
age waveforms. On the other hand, the harmonic losses and
the THD of the proposed failure-condition system is also ex-
pected to be improved in 0.25 ≤ m < 0.5, compared with the
normal-condition system, because the proposed system can
generate the 9-level voltage waveforms although the normal-
condition system generates the 5-level voltage waveforms.
That is why, the efficiency of the INV1 and the motor in the
proposed system is expected to be improved.
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Fig. 9. Experimental setup of dual inverter drive system

Fig. 10. Block diagram of controller

4. Experimental Setup and Test Results

4.1 Experimental Setup As shown in Fig. 9, the ex-
perimental setup of the dual inverter drive system has been
conducted to examine the steady operation characteristics of
the studied dual inverter drive system in the normal-condition
and the failure-condition of the DC-bus battery. The SVM is
implemented in the digital signal processor (DSP) and the
field programmable gate array (FPGA) of the controller as
shown in Fig. 10, where the DSP calculates the time durations
of the output voltage vectors and communicates the results
to the FPGA, and the FPGA outputs the switching signals
to the gate drivers of the INV1 and the INV2 with the high
resolution of 100 MHz. The open-end winding PM motor is
controlled by a field-oriented control (vector control) algo-
rithm with the maximum torque per ampere (MTPA) control
method as shown in Fig. 11, and its speed is regulated con-
stantly by a load servo motor directly connected to the test
motor. The rated output power of the test motor is 1 kW
which is fed by the two 5-kVA inverters, and other experi-
mental test conditions are shown in Table 1.

As described before, the proposed fault-tolerant function
achieves both to control the capacitor voltage across the DC-
bus of failed-side inverter and to generate the multilevel volt-
age waveforms to the motor at the same time with the SVM.
In this case, it is required to select the appropriate switch-
ing state among the redundant states considering the instan-
taneous motor power factor, because the capacitor charg-
ing/discharging modes of each switching state can be deter-
mined by the directions of the motor phase currents (20). That
is why, the phases of the commanded voltage vector and the
motor current vector are calculated with the feedback value
of the capacitor voltage, and are utilized to control the capac-
itor voltage constantly in the SVM as shown in Fig. 11.

Fig. 11. Control block diagram

Table 1. Experimental test conditions

4.2 Test Results of Dual Inverter Drive System in
Normal-Condition The test results of the studied dual
inverter drive system in the normal-condition are shown in
Fig. 12. The figures show the three-phase motor currents and
the voltages across the U-phase. On the condition of m < 0.5,
the 5-level voltage waveforms are generated across the motor
windings. In the case, the INV2 outputs the switching state
(000) or (111) throughout the SVM, in other words, the INV2
makes the neutral-point of the motor. Therefore, it is difficult
to measure the efficiency of the INV2 in m < 0.5. And also,
the output voltage waveforms in Figs. 12(a) and (b) are simi-
lar to the voltage waveforms which is measured between the
U-phase terminal and the neutral-point of the motor in a sin-
gle inverter system. On the other hand, the 9-level voltage
waveform is generated by adding the voltages of the INV1
and the INV2 in m > 0.5.
4.3 Test Results of Proposed Fault-Tolerant Function

of DC-Bus Battery The experimental test results of the
proposed fault-tolerant function are shown in Fig. 13 and Ta-
ble 2, where the steady operation characteristics of the dual
inverter drive system in the failure-condition of the DC-bus
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(a) m = 0.2 (400 r/min).

(b) m = 0.4 (800 r/min).

(c) m = 0.8 (1600 r/min).

Fig. 12. Test results of dual inverter drive system in
normal-condition

Table 2. Measured efficiency results

battery of INV2 are examined. In the figures, the motor line
current, the capacitor voltage, and the U-phase voltage are
shown, which indicate that the SVM achieves both to con-
trol the capacitor voltage of the INV2 at a half of the battery
voltage of INV1 and simultaneously to generate the multi-
level voltage waveforms to the motor. The table shows the
measured efficiency results of the INV1, the INV2, and the

(a) m = 0.2 (400 r/min).

(b) m = 0.4 (800 r/min).

Fig. 13. Test results of proposed fault-tolerant function
of DC-bus battery of INV2

motor on the condition of each modulation-index. The ef-
ficiency measured results are calculated with the following
equation. In the equation, ηmotor is the motor efficiency, PINV1

and PINV2 are the output of the INV1 and INV2, ωm is the
motor rotating speed, and T is the motor torque.

ηmotor =
ωmT

PINV1 + PINV2

However, PINV2 is only a conduction loss in the normal-
condition in m < 0.5, which is a negative value, because the
INV2 makes the neutral-point of the motor and there are no
switching transitions. On the other hand, PINV2 is the sum of
a conduction loss and a switching loss in the failure-condition
in m < 0.5, which is also a negative value, because the INV2
is operated with the capacitor and the capacitor utilizes only
a reactive power. That is why, the efficiency of the INV2
cannot be obtained at m = 0.2 and m = 0.4 in the normal-
condition and in the failure-condition. In the experimental
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tests, however, it is not achieved to switch over the dual in-
verter drive system from the normal-condition to the failure-
condition transiently.

The proposed fault-tolerant function can generate the volt-
age vectors with a half amplitude of the normal-condition
system in m < 0.25, that is, with the closer amplitude to the
voltage reference than the normal-condition system as shown
in Fig. 8, which result in the reduction of the harmonic con-
tent rate of the output voltage waveforms. That is why, the
measured efficiency results of the INV1 and the motor in the
failure-condition are slightly improved, and the THD mea-
sured results of the output voltage waveforms in the failure-
condition of the DC-bus battery are reduced by 67.8% at m =
0.2, compared with the normal-condition system.

On the other hand, the proposed fault-tolerant function
can generate the 9-level voltage waveforms across the mo-
tor windings in 0.25 ≤ m < 0.5 as shown in Fig. 8. Because
of the reduction of the harmonic component rate of the output
voltage waveforms ,therefore, the measured efficiency results
of the INV1 and the motor are also slightly improved, and the
THD measured result of the output voltage waveforms in the
proposed system is reduced by 52.4% at m = 0.4, compared
with the normal-condition system.
4.4 SVM Technique to Reduce Error Voltages in Out-

put Voltage Waveforms of Proposed Fault-Tolerant Func-
tion The proposed fault-tolerant function, where one of
the inverter is operated with the capacitor, has a problem that
an unexpected error voltages are generated during a dead
time (16) (20). The error voltages are generated due to partic-
ular transients of the switching states, where the switching
devices in the same phase of both the inverters are syn-
chronously turned on/off, or the several switching devices in
one inverter are synchronously turned on/off. Therefore, the
synchronous switching technique to reduce the error voltages
generated due to the synchronous switching transient is in-
troduced (16) (20). The introduced synchronous switching tech-
nique is performed according to the directions of the motor
line currents. Therefore, the introduced technique may be in-
complete in particular when the line currents are near by the
zero-cross points, because it is difficult to detect the direc-
tions of the motor line currents. The proposed fault-tolerant
function employs the introduced technique.

The conventional switching sequence, for example a trian-
gle wave comparison PWM, has the seven switching states
in one PWM sequence. However, the conventional PWM
sequence has a problem that the unexpected error voltages
are generated during the dead time in the dual inverter drive
system, even if the synchronous switching technique is em-
ployed. Therefore, the switching sequence to reduce the er-
ror voltages is introduced (20). The introduced sequence has
five switching states in one PWM period. In the introduced
switching sequence, therefore, the number of switching tran-
sitions are less than the conventional sequence, which means
that the switching loss is reduced in the introduced sequence.
In this paper, the proposed fault-tolerant system is operated
with the SVM which employs the introduced sequence. That
is why, the introduced sequence also contributes to improve
the measured efficiency results of the INV1 and the INV2
in the failure-condition. It is achieved that the measured ef-
ficiency results of the motor in the fault-tolerant function is

equivalent to the normal-condition. The reason why is that
the dv/dt of the output voltage waveforms in the fault-tolerant
function is a half of the normal-condition, although the error
voltage pulses are generated in the output voltage waveforms
of the fault-tolerant function even if the introduced SVM
techniques to reduce the error voltages are employed.

5. Conclusion

This paper proposed the fault-tolerant function of the DC-
bus battery in the dual inverter drive system. The studied dual
inverter drive system has a capacitor in parallel to a battery
across the DC-bus of each inverter. In the proposed fault-
tolerant function, the failure-side inverter can be achieved
the continuous operation with the capacitor instead of the
DC-bus battery, even if the DC-bus battery has failed. The
proposed fault-tolerant function requires that the capacitor
voltage of the failure-side inverter is regulated at a half of
the battery voltage of the other inverter and simultaneously
the multilevel voltage waveforms are generated to the motor
with the SVM. In this paper, the operation characteristics of
the proposed fault-tolerant function are examined through the
several experimental tests, and the experimental test results
are evaluated from the view point of the multilevel voltage
waveform generation, the THD measured results of the out-
put voltages to the motor, and the efficiencies of the inverters
and the motor, compared with the normal-condition system.
Although the transient switching over techniques from the
normal-condition to the fault-tolerant functions in the studied
dual inverter drive system have not been considered, which
will be investigated in detail in future works.
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