15 kW, 150,000 r/min 超高速 PM モータの 減磁特性を考慮した回転子構造の検討 藤田康平* 野口季彦(静岡大学)

Investigation on Rotor Structure of 15-kW, 150,000-r/min Ultra-High-Speed PM motor Taking Demagnetization Characteristic into Account

Kohei Fujita*, Toshihiko Noguchi (Shizuoka University)

This paper describes an ultra-high-speed permanent magnet motor of which rated output power is 15 kW and rated speed is 150,000 r/min. In the paper, Rotor dimensions and structure to improve demagnetization characteristic is discussed. The motor is specially designed to achieve the magnetization ratio within 1 % and to achieve the motor efficiency over 95 %.

キーワード:表面磁石形同期モータ,高速モータ,中実磁石,減磁特性

Keywords : Surface permanent magnet synchronous motor (SPMSM), high-speed motor, solid magnet, demagnetization characteristic

1. はじめに

京都議定書が発表されて以来,環境保全,省エネルギー の観点から世界各国で動力源の電動化に向けた動きが進ん でおり、近年、パワー密度を高めた高出力モータが盛んに 開発されている。高パワー密度化の観点から希土類磁石を 用いた永久磁石同期モータ (PMSM) がもっぱら採用されて おり、社会の隅々にまで普及している。モータの出力を大 きくするためには、トルクと回転数の増加が必要であり一 般的に前者を増加させるとモータの体格が大きくなる傾向 がある。そこで、更なるモータの小型化にはモータの超高 速化(超高周波化)が有効である。しかし、超高速モータ は軸振動や磁石に加わる遠心応力の観点から機械的制約が 厳しいため、回転子の形状が制限される。よって、一般的 なモータの形状では超高速化に伴う磁石渦電流損の増加な どから, 電気的特性を高くするのが困難である。そこで, 筆者らは大きなエアギャップを特色とする超高速モータの 研究を行ってきた。しかし、大きなエアギャップで設計す る超高速モータは、回転子の形状が制約される中でも減磁 特性を向上させることが重要な課題である。本稿では、減 磁特性を改善する回転子構造を検討するとともに、そのモ ータとこれまで設計してきたモータの電気的特性を比較し たので報告する。

2. 超高速モータの開発目標と基本的設計概念

<2.1> 超高速モータの開発目標

15 kW, 150,000 r/min PM モータの開発目標を表1に示す。 設計する超高速モータは 15 kW の定格出力と定格回転数 150,000 r/min の仕様をもっており, 150 %の瞬時過負荷耐量

表 1 15 kW, 150,000 r/min PM モータの開発目	標
-------------------------------------	---

Table 1. Design specifications of 15-kW, 150,000-r/min PM motor.		
Rated output power	Over 15 kW	
Rated speed	150,000 r/min	
Rated torque	Over 1 Nm	
Rated efficiency	Over 95 %	
Maximum power density	Over 50 W/cm ³	
Demagnetization ratio	Within 1 %	
DC bus voltage	Lower than 250 V	
Rated current	77 A (over load 150%)	
Maximum current	115 A	
Rotor diameter	Smaller than 43.3 mm	

表 2 検討する超高速モータの基本設計概要 Table 2. Fundamental design outline of ultra-high-speed PM motor.

Motor type	Surface permanent magnet synchronous motor (SPMSM)		
Number of phases	3 phases		
Number of poles	2 poles		
Stator configuration	Concentrated winding structure		
	N43TS Nd-Fe-B		
Permanent magnet	$(Br = 1.34 \text{ T}, H_{CB} = 963 \text{ kA/m}, BH_{max} = 350 \text{ kJ/m}^3)$		
	20HX1300		
Electromagnetic steel plates	(0.2 mm thick, 0.54 $\mu\Omega m$,		
	$B_{max} = 1.5 \text{ T}$)		

を満足するように設定した。また、回転子の周速が音速を 超えると衝撃波等の危険性があるため、回転子外径を回転 子周速が音速以下となるよう 43.3 mm 以下としている。

<2.2> 超高速モータの基本的設計概念

表2に検討する超高速モータの設計パラメータを示す。 また,図1に中空磁石形超高速モータの径方向断面図を示 す。検討する超高速モータは表面磁石形同期モータ (SPMSM)を採用する。それは巻線界磁形同期モータや誘導 モータと比較して二次側巻線が存在せず効率が良いためで ある。また、検討する超高速モータでは回転子外径が制限 されており, 遠心力に対する機械的強度の観点から埋込磁 石形同期モータ(IPMSM)とすることは困難であるため SPMSM を採用する。回転子磁極は電気角周波数を低減する ため2極とする。磁石は最大エネルギー積 BHmax = 350 kJ/m³ のネオジム磁石を使用している。そのため、大きなエアギ ャップ構造が可能となり、周方向のパーミアンス変動を小 さくするとともに、同期インダクタンスを減らすことが可 能である。固定子構造は漏れ磁束を低減することと、減磁 の原因となる磁石渦電流損を低減する目的から,集中巻き6 ティース 6 スロットの構造とする。固定子巻線は丸線を使 用することを想定し、ティース先端には厚さ3mmのフィレ ットを設ける。

3. 中実磁石形超高速モータの原理と構造

<3.1> 中空磁石形モータの減磁特性とパーミアンス係数

減磁特性の改善法として,パーミアンス係数を上げる手 法がある。パーミアンス係数とは図 2 のように磁石の動作 点を決める係数であり,次式で表される。

$$p_{u} = \frac{l_{m}}{a_{m}} \frac{a_{g}}{K_{c} l_{g}} = \frac{l_{m}}{D_{m} - l_{m}} \frac{D_{m} + l_{g}}{K_{c} l_{g}}$$
(1)

ここで, *pu*:パーミアンス係数, *lm*:磁石厚さ, *am*:磁石平 均断面積, *lg*:エアギャップ長, *Kc*:カーター係数, *ag*:エ アギャップ平均断面積, *Dm*:磁石の外径である。中空磁石 形超高速モータでは,大きなエアギャップ構造を採用して いるため *lg*が大きい。また,超高速モータは軸振動が懸念 されるため,シャフト径を大きくとり剛性を高める必要が ある。そのため,中空磁石の厚みが小さくなって *lm* が小さ くなり, *am* が大きくなるのでパーミアンス係数が小さくな る。この結果,減磁特性が悪化する。

<3.2> 中実磁石形モータの構造と解析方法

本稿では大きなエアギャップ構造のままパーミアンス係 数を上げるモータ構造として中実磁石形モータを検討する。 図3に中実磁石形超高速モータの断面図を示す。中実磁石 を採用することで *Im* を大きくし, *am* を小さくすることが できるので,エアギャップを大きくしたままパーミアンス 係数を上げることが可能である。中実磁石形超高速モータ の回転子断面図を図4に示す。超高速モータにおいて SPMSMを採用する場合,遠心力による磁石の飛散を防ぐた め保護管を設ける。検討する中実磁石形超高速モータでは, 保護管に機械的強度が高いチタン合金を使用しており,シ

図 1 中空磁石形超高速 PM モータの径方向断面図 Fig. 1. Cross section of hollow magnet ultra-high-speed PM motor.

図2 磁石の B-H 曲線と動作点 Fig. 2. B-H characteristic and operating point of permanent magnet.

図 3 中実磁石形超高速モータの断面図 Fig. 3. Cross section of solid magnet ultra-high-speed PM motor.

図 4 中実磁石形超高速モータの回転子断面図 Fig. 4. Cross section of rotor of solid magnet ultra-high-speed PM motor.

ャフトと磁石を保護管に圧入して,保護管で両軸端を連結 して回転する構造となっている。また、中実磁石を使用す るとシャフト部分が全て磁石になるため、電気的ギャップ が格段に大きくなり,同期インダクタンスを更に低減する ことができる。本稿では、図1に示した中空磁石形モータ# 1 と図 3, 図 4 に示した中実磁石形モータ# 2 の電気的特性 を比較した。設計したモータの特性を比較するための電磁 界解析ソフトは JMAG-Designer 18.0[™]を使用する。

電磁界解析条件と解析結果の比較 4

比較する中空磁石形超高速モータ#1と中実磁石形超高速 モータ#2の設計パラメータと主要諸元を表3に示す。モー タプロポーションに関しては、両モデルとも扁平な形状で ある。また、両モデルとも磁石磁束をより多く固定子に鎖 交させるために, 固定子オーバーハングを 2 mm 設けてい る。両モデルとも大きなエアギャップの効果から、モータ のインダクタンスを 37 µH と小さくすることができる。し かし、#2のモデルは同期インダクタンスが小さくなってい るにも関わらず、#1 と同等のインダクタンスであることか ら漏れインダクタンスが大きいと考えられる。また、固定 子のバックヨーク, ティース部分の磁束密度は約1.4Tで揃 えている。検討した 2 つのモータで 95 %以上の効率と 50 W/cm³以上のパワー密度を達成した。2つのモータを評価す る上で重要になる評価指標として減磁特性と損失が挙げら れる。減磁特性に関しては減磁率を1%未満に抑えることが 望ましい。損失に関しては全損失が低いことが望ましいが, 定格運転時にモータ効率が最大となることも重要である。 このような背景から、本稿では減磁特性、損失、最大効率 動作点についての解析結果を比較する。減磁特性について は、磁石温度 200 ℃で-d 軸に最大電流が流れたときを想 定し、減磁前後の20℃無負荷誘起電圧を比較する。損失と 効率に関しては、モータの温度が75℃のときを想定する。 また、ある回転数でのモータの最大効率運転条件は下式で 表される。

$W_s + W_r = W_c$

(2)ここで、Ws は固定子で発生する鉄損、Wr は回転子で発生 する鉄損,Wcは固定子巻線の銅損である。この式より鉄損 と銅損の比率がほぼ1:1になるとき最大効率が得られるこ とがわかる。今回はこの条件に基づき解析結果を比較評価 する。減磁特性の比較結果を図5に示す。2 モデルの減磁 解析後の磁石磁束密度分布を図6に示す。図5から中空磁 石形モータ#1の減磁率と比較して、中実磁石形モータ#2 の減磁率は 1/100 以下である。実際に、図6から#1の磁束 密度分布は磁石中央の内側部分が激しく減磁しているのに 対して、#2は減磁している様子が見られない。よって磁石 を中空形状から中実形状にすることにより、減磁特性の大 幅な向上が可能であることを確認した。定格運転時の総合 損失の比較と損失の内訳を図7, #2の定格運転時の鉄損分 析結果を図8、保護管に発生する渦電流損の内訳を図9に示 す。図7より、#1の方が#2より全損失が小さいことがわ

Motor model	# 1 (hollow)	# 2 (solid)
Rotor outer diameter	37.2 mm	39.0 mm
lm	8.1 mm	14 mm
lg	10.7 mm	5.55 mm
Permeance coefficient	1.1	3.3
Number of winding turns	22	22
Winding space factor	50.8 %	50.8 %
Current density	4.78 A (Rated operation)	4.78 A (Rated operation)
Protection tube	Glass fiber (0 Ωm)	Titanium alloy (2.3 μΩm)
Stator winding resistance	5.5 mΩ	5.3 mΩ
Stator winding inductance	37 µH	38 µH
Efficiency at rated operating point	97.4 %	96.9 %
Maximum power density	57.9 W/cm ³	60.4 W/cm ³

図5 減磁特性の比較 Fig. 5. Comparison of demagnetization characteristics.

図6 2 モデルの減磁解析後の磁石磁束密度分布 Fig. 6. Flux density distribution of demagnetization in permanent magnets.

かる。これは#2の鉄損の大きさに起因しており、その中で も保護管に使用されているチタン合金の渦電流損が主要な 原因である。図8より中実磁石形超高速モータ#2において, 保護管の渦電流損は全鉄損の26.7%(117.8W)を占めてお

表3 比較するモータの設計パラメータと主要諸元 Table 3. Design parameters and major specifications of motor models.

り,鉄損増加の主因であることがわかる。この保護管渦電 流損の原因としては,電機子磁束とティースとスロット開 口部におけるパーミアンス変動に起因するスロットリプル による空間高調波が考えられる。図 9 から磁石磁束による 渦電流損の割合が小さく,電機子磁束による渦電流損が 59 %を占めており支配的であることがわかる。本超高速モ ータは大きなエアギャップ構造を用いているので,パーミ アンス変動による影響が小さい反面,電機子の漏れ磁束が 保護管に鎖交しやすい。しかし,保護管に使用されている チタン合金は比熱や熱伝導率が小さいので,磁石の熱減磁 に影響する可能性は低いと考えられる。また,#1の方が#2 より鉄損が小さく鉄損と銅損の比率も1 に近いため,前式 より定格運転時に最大効率動作点近傍で運転できると考え られる。

5. まとめ

本稿では、15 kW、150,000 r/min 超高速モータについて減 磁特性を考慮した回転子構造を検討した。高効率、高パワ 一密度を達成できる 2 つのモータ構造をとりあげ、中空磁 石形超高速モータと中実磁石形超高速モータの電気的特性 比較を行った。中空磁石から中実磁石にすることにより減 磁特性を大幅に改善することができ、中空磁石形超高速モ ータと同等の高効率と高パワー密度を達成できることを確 認した。しかし、漏れインダクタンスが大きかったり、定 格運転時に最大効率点から離れた動作点で運転するためな おも課題が残存することが明らかになった。また、損失に 関しては、中空磁石形超高速モータと比較して保護管に使 用されるチタン合金の渦電流損が問題となることから全損 失が大きくなり,また,保護管に発生する渦電流損は電機 子磁束による影響が大きいことがわかった。今後は、諸々 課題の解決や,解析結果の妥当性について実機による検証 も行っていく所存である。

文 献

- (1) 鹿野・野口「150,000 r/min-1.5 kW PM モータのパーミアンス係数最適化による効率改善」電学産応部門大, 3-53 (2006)
- (2) 小森・野口「スロットレス超高速 PM モータの高パワー 密度設計」電学産応部門大, 3-18 (2013)
- (3) 深尾・千葉「超高速回転機と駆動技術」電学論 D, 117 巻9号, p.1131
- (4) 山崎・磯田「集中巻 IPM モータの鉄損及び磁石渦電流損 解析」電学論 D, 128 巻 5 号
- (5) 中野・米谷・川村・宮田「永久磁石型同期機の熱減磁評価」電学全大, 5-011 (2003)

図7 定格運転時の総合損失の比較と損失内訳 Fig. 7. Comparison of total losses in rated operation and loss analysis results.

図 8 #2の定格運転時の鉄損分析結果 Fig. 8. Analysis result of iron loss of #2 in rated operation.

図 9 保護管に発生する渦電流損の内訳 Fig. 9. Detail of eddy-current loss in protection tube.