ギャップ構成に着目した小型 PM モータの 高パワー密度化に関する検討

宇佐美和明* 野口季彦

Investigation on High-Power-Density Design of Small PM Motors Focusing on Air Gap Configuration

(静岡大学)

This paper describes a case study of high-power-density design of small permanent magnet (PM) motors focusing on their air gap configuration. Two types of the PM motors, i.e., a radial air gap PM motor and an axial air gap PM motor, are taken up for investigation. The investigation has been done from the viewpoints of I-T characteristics, N-T characteristics, efficiency maps, torque ripple characteristics, and so forth. It has been clarified that the axial air gap PM motor has great advantage to achieve the high-power-density design under some limited conditions.

キーワード: アキシャルギャップモータ, PM モータ, 小型化, 軽量化 **Keywords**: Axial gap motor, PM motor, downsizing, weight saving

1. はじめに

近年,様々な機器の電動化が精力的に行われている中,モ ータの高効率化と小型化は必須の課題となっている。高効 率化を実現するために PM 同期モータが数多く採用される のはもちろんのこと、さらなる高パワー密度化を目指して 扁平型モータの開発も盛んに行われている。扁平形状のモ ータはアキシャルギャップ構造を用いるとラジアルギャッ プ構造のモータと比較して大幅に小型化できるメリットが ある。扁平構造にした場合ラジアルギャップモータはトル クの発生面積が大きく減少してしまうが、アキシャルギャ ップモータはトルク発生面積が減少しにくいという利点が ある。また,アキシャルギャップモータはラジアルギャップ モータと比較して銅の占積率を高くしやすい構造であるた め、銅損も低減できるという利点がある。本稿ではシミュレ ーションを用いて,既存のラジアルギャップモータと同等 の性能のモータをアキシャルギャップモータで実現した場 合, どの程度の小型化, 軽量化が可能であるか検討したので 報告する。

2. モータ設計の制約

設計をする際に設けた制約を以下に示す。

- ・使用する磁石の体積を等しくする
- ・同じ磁石を用いる
- ・相抵抗を等しくする
- ・コイル占積率を等しくする

Fig. 1. Overview of designed motors.

・軟磁性体は鉄損がほぼ等しいものをする

これら 5 つの制約の下で、ラジアルギャップ構造のモータ がアキシャルギャップ構造を用いることにより、どの程度 小型化または薄型化が可能であるか、電磁界解析ソフト (JMAG Designer 17.1TM)を用いて検討した。

3. 三次元電磁界解析の諸条件

〈3・1〉モータの設計と外観

Fig.1に各モータの外観と主要な寸法を示す。SPM ラジア ルギャップモータは電気学会のモデルをベースに縮尺を変 更したものを使用した。アキシャルギャップモータは SPM ラジアルギャップモータの IT 特性と等しくなるように次節 で述べた制約を満たすように設計したモータである。直径 が 100 mm であると十分なトルクが得られなかったため、直 径を 120 mm にしてモデルを作成した。

〈3・2〉 モータの材料と仕様

Table.1に各モータで用いた材料を示す。ステータコア は 400 Hz, 1T のときの鉄損がほぼ等しい材料 (35JN440:178 kw/m³, Somaloy 1000 SP:220 kw/m³) を選択した。 ラジアル ギャップモータは電磁鋼鈑を用いて、アキシャルギャップ モータには SMC 材を用いた。鉄損が近いものを用いること により、鉄損の違いを可能な限り小さくすることを目的と している。また、ロータコアはラジアルギャップモータでは 電磁鋼板を用い、アキシャルギャップモータでは非磁性体 のステンレスである SUS304 を用いた。アキシャルギャップ モータはロータを導電性の磁性体にすると渦電流損が多く 発生するため、非磁性体金属を用いている。マグネットは一 般的なフェライト磁石を用いた。シャフトも一般的な炭素 鋼を用いた。また、Table.2にそれぞれのモータの仕様を示 す。ラジアルギャップモータは電気学会の技術報告書に記 載されていたモデルを元に縮尺を変更して直径 100 mm の モデルとしている。アキシャルギャップモータは24スロッ ト16極のものを用いている。

〈3・3〉モータの駆動条件

モータの解析の条件が以下の通りで行った。

【I-T 特性】

- ・q軸のみに通電し、進角は行わない
- ・各相に 0~10 Arms を通電し,正弦波駆動する
- ・回転速度は3000 r/min とする

【N-T 特性】

- 各相の最大電流を10 Arms とする
- ・インバータの直流バス電圧を100Vとする
- ·正弦波駆動
- ・インバータや配線での電圧降下などは考慮しない

【効率マップ】

- 各相の最大電流を10 Arms とする
- ・インバータの直流バス電圧を100 V とする
- ・正弦波駆動
- ・インバータや配線での電圧降下などは考慮しない
- ・導体の渦電流損は考慮しない

【トルク波形】

- ・q軸のみに通電し、進角は行わない
- ・各相に10 Arms を通電し,正弦波駆動する
- ・回転速度は 3000 r/min とする

【コギングトルク波形】

Table 1. Materials used in designed motors.

	Radial gap motor	Axial gap motor
Stator core	35JN440	Somaloy 1000 SP
Rotor core	35JN440	SUS304
Magnet	MNF12E	MNF12E
Shaft	S45C	S45C

Table 2. Specifications of designed motors.

	Radial gap motor	Axial gap motor
Motor type	SPM motor	SPM motor
Outside diameter	Ф100 mm	Ф120 mm
Air gap distance	0.637 mm	0.750 mm
Slot combination	12s8p	24s16p
Coil space factor	40 %	40 %
Number of turns	30 T/slot	26 T/slot
Conductor diameter	Φ1.02 mm	Φ1.03 mm
Phase resistance	0.364 Ω/phase	0.353 Ω/phase
Coil connection	Star connection	Star connection
Current density (10Arms/phase)	6.14 Arms/mm ²	6.02 Arms/mm ²
Ld	2.01 mH	0.567 mH
Lq	2.05 mH	0.585 mH

Table 3. Motor dimensions.

	Radial gap motor	Axial gap motor
Outer diameter	$\Phi 100 \text{ mm}$	Φ120 mm
Axial length	50 mm	33.8 mm
Axial length Including coil ends	70 mm	33.8 mm
Volume	392 cm ³	382 cm ³
Volume including coil ends	550 cm ³	382 cm ³

Table 4. Estimated weights of parts and motors.

	Radial gap motor	Axial gap motor
Stator core	1117 g	868 g
Rotor core	697 g	130 g
Permanent magnet	223 g	223 g
Shaft	122 g	80 g
Windings	394 g	469 g
Total	2554 g	1771 g

・60 r/min で回転させる

【無負荷誘起電圧】

・3000 r/min で回転させる

4. 解析結果

〈4・1〉 寸法の比較

Table.3に各モータの寸法を示す。アキシャルギャップモ ータは直径でトルクが決定するため、ラジアルギャップモ ータと同じ直径で同じトルクを出すことは難しく、20%直 径が増加することとなった。コイルエンドを含まない磁気 回路の厚みはアキシャルギャップ化することにより,32.4% の薄型化が実現できた。また、ラジアルギャップモータはコ イルエンドがあるため、コイルエンドまで含んだ厚みは 70 mm 程度になるため、コイルエンドを考慮したラジアルギャ ップモータと比較すると 51.7 %の薄型化を実現できる。次 に体積の比較であるが、それぞれのモータを円筒形とみな して計算を行った。コイルエンドを含まない磁気回路の大 きさはほぼ同等となったが、コイルエンドを含んだ磁気回 路と比較すると 30.5 %の薄型化を実現できることが確認で きた。

〈4・2〉 質量の比較

Table.4に各モータの各部品と合計の質量を示す。CAD で デザインしたモータモデルから体積を求めて、それぞれの 材料に比重を乗じて質量を求めた。コイルの質量はさらに コイル占積率を乗じて計算している。ラジアルギャップモ ータと比較してアキシャルギャップモータはロータの質量 が小さく、ロータコアだけで見ると80%程度の軽量化がで きている。アキシャルギャップモータの場合スロット数が 増加するため合計のモータの巻き数が増加し、コイルの質 量が増加する傾向にある。ラジアルギャップモータと比較 して19%の増加となった。磁気回路全体として31%の軽量 化ができることが確認できた。

〈4·3〉 I-T 特性の比較

Fig. 2 に各モータの I-T 特性を示す。両モータで特性が一致していることが確認できる。モータのモデルを設計する際に、ラジアルギャップモータとアキシャルギャップモータで等しくなるように設計したため特性が一致している。

<4·4〉 N−T 特性の比較

Fig.3に各モータのN-T特性を示す。最大のトルクは同等で、アキシャルギャップモータの方が高速回転が実現可能であることがわかる。これはFig.9にもあるようにアキシャルギャップモータの方が誘起電圧が小さいことに起因すると考えられる。

〈4・5〉 効率マップの比較

Fig. 4 と Fig. 5 に各モータの効率マップを示す。アキシャ ルギャップモータの方が高効率な動作領域が大きいことが わかる。しかし,アキシャルギャップモータは一般にオープ ンスロットであり,磁石の磁束がコイルに鎖交する領域が 存在し、コイルに導体渦電流損が生じる。本論文の効率マッ プの解析では導体の渦電流損が考慮されていないため,実 際は効率が若干悪化してラジアルギャップモータと同等程 度の効率になるのではないかと考えられる。

〈4·6〉 トルク波形の比較

Fig.6に各モータのトルク波形を示す。このときのラジア ルギャップモータのトルクリプル率は 19.5%で,アキシャ ルギャップモータのトルクリプル率は 14.5%である。アキ シャルギャップモータはラジアルギャップモータと比較し て 25%程度トルクリプルが小さいことが確認できた。

〈4・7〉コギングトルク波形の比較

Fig.7 に二つのモータのコギングトルク波形を示す。ラジ

アルギャップモータのコギングトルクは 0.42 Np-p で,アキ シャルギャップモータのコギングトルクは 0.45 Np-p であ り,波形が正弦波に近い。ラジアルギャップモータとアキシ ャルギャップモータでほぼ同様の値となることを確認でき た。

〈4・8〉 トルクリプル率の比較

Fig. 8 に各モータのトルクとトルクリプル率の関係を示 す。低トルク域ではトルクリプル率は等しいが、アキシャル トルクが増大するとともにトルクリプル率が小さくなるこ とが確認できた。

〈4・9〉 無負荷誘起電圧波形の比較

Fig.9に各モータの無負荷誘起電圧波形を示す。それぞれ のモータのU相の電圧を解析したものであり、横軸には電 気角を示してある。ラジアルギャップモータの振幅は60V 程度であるが、アキシャルギャップモータの振幅は46V程 度である。アキシャルギャップモータは誘起電圧定数が低 く抑えられており、ラジアルギャップモータよりも高速回 転が可能であると考えられる。また、アキシャルギャップモ ータの誘起電圧波形はラジアルギャップモータの誘起電圧 波形よりも正弦波に近く、高調波が少ないことを確認でき た。

5. まとめ

ラジアルギャップモータを磁石量一定の条件でアキシャ ルギャップモータに置き換えた場合,直径を20%程度増加 させることで、厚みを約50%低減、質量約30%低減できる ことが判明した。モータを実際に設計する際にはケースの 大きさや質量も考慮する必要があるが、ある程度の目安に はなるのではないかと考えられる。また,アキシャルギャッ プモータはステータの中心部に空間があるため、その空間 にベアリングを入れるなどの工夫をすることにより、ケー ス設計の際にも薄型化に貢献すると考えられる。また, 磁石 量を一定としたが、アキシャルギャップ化する際に、フェラ イト磁石ではなく、ネオジムボンド磁石を用いることが可 能であれば, 直径をラジアルギャップモータと同様に Φ100 mm を保ったまま、コイルエンドを含む磁気回路比で 50% 程度の小型化が実現可能であることも判明している。低速 回転域で動作させるモータであればアキシャルギャップ構 造を用いることによって小型化が実現可能であること本研 究により判明した。

- (1) 神山博夢・野口季彦・服部晃尚・山田洋次・横山誠也:「高トルク密度車載用モータの開発」平成29年電気学会全国大会, No.5-004, pp.7-8(2017)
- (2) 三浦昂彦・茅野真冶・竹本真紹・小笠原悟司:「次世代ハイブリッド 自動車用フェライト磁石アキシャルギャップモータの提案」半導体 電力変換研究会, Vol.149, No. SPC-09-159, pp.59-64 (2009)
- (3) 電気学会:「回転機の電磁界解析高度化技術」,電気学会技術報告, No.942, pp.38 (2004)

Fig. 8. Torque ripple ratio and average torque characteristics.

文 献