新しいコンシクエントポール形モータの 零相回路を用いたトルクブーストに関する検討

村上和寛*,野口季彦(静岡大学),服部晃尚,金子陽一(株式会社デンソー)

Investigation on Torque Boost Operation of Novel Consequent-Pole Motor Using Zero-Phase Circuit Kazuhiro Murakami, Toshihiko Noguchi (Shizuoka University) Akihisa Hattori, Yoichi Kaneko (DENSO CORPORATION)

A new consequent-pole permanent magnet (PM) motor is proposed in the paper, which forms an image-pole-pairs for every pole-pair of N and S poles. It is possible for the motor to achieve field weakening operation with less d-axis current and high efficiency in a high-speed range. However, the motor still has a problem of low torque at low speeds. In order to solve this problem, a three-phase four-wire inverter is used to drive the motor composed of a set of three-phase windings and a zero-phase winding to boost the output torque in the low-speed range. The paper demonstrates computer simulation results and the torque boost operation of the motor is described.

キーワード: コンシクエントポールモータ, 弱め界磁制御, 零相回路, トルクブースト (Keywords: consequent-pole permanent magnet (PM) motor, field weakening operation, zero-phase current, torque boost)

1. はじめに

近年, PM モータの可変速運転領域の拡大を目指した研究 が精力的に行われている。PM モータの多くはエネルギー密 度が高いネオジム磁石を使用して誘起電圧定数を高めるこ とにより,低速運転域で大きなトルクを発生するように設 計できる。しかし,低速運転域で大トルクを出力できる PM モータは高速運転が困難となる。そのため,一般に弱め界 磁制御を利用することで, PM モータの誘起電圧を減少させ 高速運転域の拡大を行う。

筆者らは車載補機用小型モータで広範囲な可変速運転を 可能とするため、容易に実現できる弱め界磁制御による高 速回転域の拡大を目指してきた。弱め界磁制御では巻線の 銅損増加が懸念されるが、これを低減するため励磁電流を 小さく抑える必要がある。そのため、インダクタンスを大 きくできる新たなモータの磁気回路を検討しなければなら ない。

筆者らは高速運転域の拡大を PM モータの磁気回路から アプローチし,低速運転域におけるトルクの増大を駆動方 法から改善することを目指してきた。その一つとして, PM モータのロータで 1 極対毎にイメージポールを形成する構 造とすることにより,高速運転域の拡大を実現する新しい コンシクエントポールモータを検討してきた⁽¹⁾。

本稿では、新しいコンシクエントポールモータの諸特性

について,従来の SPM モータとコンシクエントポールモー タとの比較評価を行った。また,新しいコンシクエントポ ールモータの低速域におけるトルク出力特性を改善すべ く,モータの磁気回路を変えることなく,三相電流と零相 電流を用いて低速運転域においてトルクをブーストする手 法についても検討したので報告する。

2. 提案するモータの構造と原理

Fig.1に提案するモータモデルを示す。このモータは8極 相当(磁石磁極:4極,イメージポール:4極)12スロット 集中巻の基本構造をもつ。モータ体格の小型化のため,ス テータ巻線は集中巻としている。ロータはN極とS極の1 極対毎にイメージポールを形成する構造とし,同じ相のイ メージポールに対向する巻線と磁石に対向する巻線は直列 接続とする。したがって,ロータコアの磁気回路は不平衡 であるが,各相のインダクタンスはバランスする。このた め,不平衡なロータ磁気回路によるモータ電流制御への悪 影響はない。また,各相のインダクタンスがバランスする ので,イメージポール部の磁気回路設計に自由度が生まれ る。

提案するモータは従来の PM モータに比べ磁石量を半分 としているため磁石磁束が少なく,ロータの磁気回路は鉄 が占める割合が多いので,インダクタンスが大きくなる構 造をもつ。

図 1 提案モータモデル Fig. 1. Proposed motor model.

$$V_0 = \omega \sqrt{\left(\Psi_a + L_d i_d\right)^2 + \left(L_q i_q\right)^2} \tag{1}$$

本モータは低速運転域ではトルクが小さくなるが、電機 子のインダクタンスが大きく、磁石磁束が少ないことから 弱め界磁制御時に少ない励磁電流で高速運転域の拡大を期 待することができる。

3. 提案モータの諸特性

電磁界解析ソフト JMAG-Designer 18.0TMを用いて,提案 するモータと一般的な SPM モータならびにコンシクエント ポールモータの特性を比較する。提案するモータのモデル は Fig.1, コンシクエントポールモータと SPM モータのモデ ルを Fig. 2,モータモデルの詳細を Tab. 1 に示す。3 モデル のモータ体格は同等として、ロータ構造のみが異なってい る。提案するモータとコンシクエントポールモータは 8 極 相当(磁石磁極:4極,イメージポール:4極)であるが、 SPM モータは 8 極全てを磁石とするため磁石体積は倍であ る。

〈3・1〉 無負荷誘起電圧の比較

3 モデルについてロータ回転速度が 600 r/min での U 相無

(a) Consequent pole motor.
 (b) SPM motor.
 図 2 比較モータモデル
 Fig. 2. Comparison motor models.

表1 モータ仕様				
Tab. 1. Motor specifications.				
	Proposed motor	Consequent pole motor	SPM motor	
Stator diameter	80 mm	←	\leftarrow	
Rotor diameter	42.85 mm	<i>—</i>	Ļ	
Stack length	37 mm	←	\leftarrow	
Air gap length	1.045 mm	←	\leftarrow	
Number of poles	8 (Image pole:4, magnet:4)	8 (Image pole:4, magnet:4)	8	
Number of slots	12	←	\leftarrow	
Number of turns	16 T	<i>—</i>	Ļ	
Magnet volume	7.672 cc	7.672 cc	15.344 cc	
Armature winding Connection	4 series Star connection	←	←	
Magnet type	NMX-43SH	~	←	

負荷誘起電圧波形とその FFT 結果を Fig. 3 に示す。提案するモータと SPM モータでは磁石体積が 2 倍異なるので,提案するモータの誘起電圧定数は SPM モータの約 50%ほどである。このことから,提案するモータの方が広い高速運転 領域をもつことが推察される。磁石体積が同等の本モータ とコンシクエントポールモータを比較すると、本モータの 方が誘起電圧定数は低い。また、周波数解析の結果より提 案するモータは基本波含有率が高いことから弱め界磁制御 による高速運転に適していると考えられる。

〈3・2〉 インダクタンスの比較

3 モデルについて電機子電流振幅を 20 A 一定の条件で, 電流位相 β を変化させたときの d 軸インダクタンス, q 軸イ ンダクタンスの変化を Fig. 4 に示す。3 モデルすべて電流位 相 β を大きくするとインダクタンスが増加した。d 軸インダ クタンス, q 軸インダクタンスが増加した要因として,電流 位相を進角させるほど d 軸 q 軸ともに磁束量が減少するた め磁気飽和が緩和されたことが挙げられる。

それぞれのモデルでインダクタンスを比較すると、d 軸イ ンダクタンスは提案するモータが最大で SPM モータに対し て 45%ほど大きい。q 軸インダクタンスはコンシクエント ポールモータが最大である。SPM モータは d 軸インダクタ ンス、q 軸インダクタンスともに最小である。このように、 イメージポールをもつモータは磁気回路に占める鉄の割合 が高いため、インダクタンスが大きくなる。また、提案す るモータは d 軸インダクタンスが最大であることから、弱 め界磁制御時に少ない励磁電流で逆起電圧を減少させるこ とができる。

〈3・3〉 インダクタンスの高調波成分の比較

ロータ構造の違いによるインダクタンスの高調波成分に ついて比較する。解析条件は磁石を空気とし、ロータ材料 は鉄のみとする。通電条件は d 軸電流のみとし、電流振幅 は20Aとする。上記解析条件での3モデルのU相コイル鎖 交磁束波形と FFT 結果を Fig. 5 に示す。SPM モータではロ ータ構造によるパーミアンス変動が生じないため、コイル 鎖交磁束は基本波成分のみとなる。コンシクエントポール モータではロータ表面のイメージポールと磁石によりパー ミアンス変動が生じる。その結果として、コイル鎖交磁束 に偶数次成分が生じる。しかし、提案するモータではロー タ表面にイメージポールと磁石が存在し、ロータ構造によ るパーミアンス変動は生じるが、一つの U 相コイルはイメ ージポールに対向し,他方の U 相コイルは磁石に対向する ため、パーミアンス変動の影響を受けない。したがって、 提案するモータの U 相コイル鎖交磁束は偶数次成分が生じ ることなく基本波成分のみとなる。

〈3·4〉 N-T 特性の比較

3 モデルについて最大出力運転時の N-T 特性を Fig. 6 示 す。直流バス電圧を 12 V,最大電流振幅を 20 A,各相の最 大起磁力は 1280 AT である。

3 モデルの N-T 特性を比較すると,高負荷低速運転域では 誘起電圧定数の高い SPM モータの出力トルクが最も大きく なる。しかし,高速運転域を最も広く取れるのは提案する モータであった。これは提案するモータの誘起電圧定数が 小さいことと d 軸インダクタンスが大きいことから逆起電 圧は小さく,逆起電圧を打ち消す誘起電圧が大きくなるか らである。したがって、インバータの電圧飽和に達して弱

図 5 U相コイル鎖交磁束波形と FFT 解析結果の比較 Fig. 5. Comparison of U-phase flux linkage and FFT analysis results.

め界磁を行うと高速運転域が大幅に拡大される。コンシク エントポールモータが SPM モータと同程度の高速運転域し かもたないのは、ロータ構造によるインダクタンスの偶数 次成分により、弱め界磁制御時の誘起電圧にも偶数次成分 が生じ、弱め界磁制御による効果が得られにくいためであ る。

以上の結果より、同一のステータ起磁力とした 3 モデル の中で提案するモータは高速運転域を広くもつことから、 弱め界磁制御時の励磁電流を最小に抑えられることがわか った。

4. 提案モータのトルクブーストの原理

以上より, PM モータのロータ構造を1極対毎にイメージ ポールを形成することで高速運転域を拡大できる。しかし, 誘起電圧定数が小さいことから低速域での出力トルクは SPM モータの半分にすぎない。そこで,ロータの磁気回路 を変更せずにステータ構造と駆動方法を工夫することでト ルク特性の改善を検討した。

従来の PM モータの磁石起磁力は電機子の回転磁界と同 期する成分により占められ,その他の高次成分は僅かであ る。しかし、提案するモータはN極とS極の1極対毎にイ メージポールを形成するため, ロータの磁石起磁力が電機 子の回転磁界と同期する8極成分だけでなく、低次磁石起 磁力である 4 極成分ももつ。提案するモータが複数の磁石 起磁力をもつのは,ロータ構造が二種類の磁石極性が重ね 合わされたものと見なせるからである。提案するモータの 磁石重畳の概念図を Fig. 7 に示す。Fig. 7 において上段は8 極成分を有する磁石配置,中段は4極成分を有する磁石配 置である。極性の異なる磁石配置は互いに打ち消され、同 一極性の磁石配置だけが残ることでこれら 2 つの起磁力成 分が重畳したロータ磁石配置は最下段に示したようにな る。磁石重畳の原理より、提案するモータは2 つの起磁力 成分を併せもつことがわかる。そこで、提案するモータの 駆動方法として、低速運転域で三相と零相を用いることに より,1台のインバータで8極成分と4極成分の磁石起磁力 に同期させ、その結果として、低速運転域でのトルクをブ ーストする手法を検討する。Fig.8に提案するモータのステ ータ巻線構造を示す。提案するモータは同一ティースに三 相巻線と零相巻線を設けた二重巻線構造をもつ。Fig.9に二 重巻線構造をもつ提案モータの駆動回路を示す。本回路で はモータ中性点とインバータ直流バス間に電流経路を新た に 設けることにより、三相平衡電流に加え零相電流を制御 できる。よって、三相巻線による回転磁界は磁石起磁力の8 極成分、零相巻線による交番磁界は4 極成分と同期させる ことができる。以上のように、提案するモータを複合起磁 カモータと捉え,三相のみから三相と零相で駆動すること で、インバータの台数を増加させることなく低速運転域で のトルクブーストを実現することができる。

図 6 N-T 特性の比較 Fig. 6. Comparison of N-T Characteristics.

図7 提案するモータの磁石重畳の概念図

図 9 二重巻線構造をもつ提案モータの駆動回路 Fig. 9. Motor drive circuit using zero-phase winding.

Tab. 2. Motor specifications.			
	Proposed motor with double stator windings		
Stator diameter	80 mm		
Rotor diameter	42.85 mm		
Stack length	37 mm		
Air gap length	1.045 mm		
Number of poles	8 (Image pole:4, magnet:4)		
Number of slots	12		
Number of zero phase-turns	10 T		
Number of three-phase turns	16 T		
Magnet volume	7.672 cc		
Three-phase winding connection	4 series		
Zero-phase winding connection	4 series		
Magnet type	NMX-43SH		

表 2 モータ仕様 Tab 2 Motor specification

5. シミュレーション結果

電磁界解析ソフト JMAG-Designer 18.0[™]を用いて,二重 巻線をもつ提案モータの諸特性を確かめた。モータモデル は Fig. 8 に示した通りである。モータモデルの詳細を Tab. 2 に示す。

〈5・1〉 提案するモータの磁石起磁力

Fig. 10 に提案するモータのロータ表面磁束密度分布と FFT 解析結果を示す。ロータ構造を8極(磁石磁極:4極, イメージポール:4極)とすることで,磁石起磁力に8極成 分と4極成分が含まれていることを確認できる。

〈5・2〉 二重巻線をもつ提案モータの無負荷誘起電圧

Fig. 11, Fig. 12 にロータ回転速度が 600 r/min での三相巻 線,零相巻線における無負荷誘起電圧波形と FFT 結果を示 す。三相巻線の中性点電位を基準電位としており,零相巻 線はインバータ直流バスの中点を基準電位としている。三 相巻線は 8 極成分と同期するため,無負荷誘起電圧波形で 8 次成分(40 Hz)をもつことが確認できる。零相巻線の無負 荷誘起電圧波形は 4 極成分(20 Hz)を主成分とし,奇数次 を含む方形波に近いことが確認できる。

〈5·3〉 トルクブーストの検証

三相と零相回路を用いた提案モータにて三相巻線による 回転磁界は8極成分に同期させ、零相巻線による交番磁界 は4極成分に同期させる。低速運転領域にてトルクブース トを行うため、電流指令値に対して電圧余裕をもつ運転領 域を想定した。また、三相4線式の駆動回路を用いている ため、零相巻線と三相巻線には独立した電流を通電させる ことができる。そのため、零相巻線には方形波電流を通電 する。解析では電流源を用いて三相巻線各相に電流振幅が 1/3の同相方形波電流を重畳し零相巻線に通電する。解析条

図 10 ロータ表面磁束密度分布と FFT 解析結果 Fig. 10. Rotor surface flux density and FFT analysis result.

図 11 三相巻線の無負荷誘起電圧波形と FFT 解析結果 Fig. 11. Three-phase back e.m.f. waveforms and FFT analysis results of proposed motor with three-phase winding.

件として、三相巻線に流す電流は零相電流も含めた真の実 効値で20Aとし、零相巻線に流れる電流は実効値20Aの 方形波とした。Fig. 13に三相+零相回路と三相回路のみで提 案モータを駆動した場合のトルク波形とFFT解析結果を示 す。零相は単相駆動であるためトルクリプルが大きいが三 相と零相で駆動することにより平均トルクが増加すること を確認できた。

6. まとめ

本稿では、N極とS極の1極対毎にイメージポールを形 成する新しいコンシクエントポールモータの諸特性につい て, SPM モータと従来のコンシクエントポールモータとで 比較評価し、新しいコンシクエントポールモータは同等体 格で広い高速運転域をもつことを示した。しかし、新しい コンシクエントポールモータは低速運転域において出力ト ルクが小さいことが問題である。そこで、N 極と S 極の 1 極対毎にイメージポールを形成するロータ構造は不変とし 本来の磁気回路特性は有したままステータ構造を変えて三 相と零相回路を用いて駆動することにより、平均トルクを 増加できることを確認した。今後は,零相巻線に生じる誘 起電圧が高速運転域における出力特性の拡大に影響するの で,回路動作にて零相巻線に生じる誘起電圧を抑制する手 法について検討する。また、ステータ二重巻線構造ではス ロット内での零相巻線と三相巻線の干渉により、電機子起 磁力を十分に確保できないので,零相巻線と三相巻線のス ロットが独立するステータ構造を検討する。

文 献

- (1) 村上・野口・青山:「新規コンシクエントポールモータの提案と数学 モデルの基礎検討」H30 電学東海大 (2018)
- (2) 土方・茂田・刈谷・赤津・加藤:「二巻線方式を用いた複合起磁力モ ータに関する検討」電学論 D, Vol. 133, No. 10, pp. 986-994 (2013)
- (3) 赤津・涌井:「巻線係数とインダクタンス係数を用いた多極多スロット集中巻 SPMSM の簡易設計手法」電学論 D, Vol. 127, No. 11, pp. 1171-1179(2007)
- (4) J.A. Tapia, F. Leonardi, and T.A. Lipo: "Consequent-pole Permanent Magnet Machine with Extended Field-Weakening Capability", IEEE Trans. on IA., Vol. 39, No. 39, pp. 1704-1709 (2003)
- (5) T.A. Lipo and M. Aydin: "Field Weakening of Permanent Magnet Machines – Design Approaches", Power Electronics and Motion Control Conference, Riga, Latvia (2004)
- (6) S. Morimoto, Y. Takeda, T. Hirasa, K. Taniguchi: "Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity", IEEE Trans. on Industry Applications, IA-26, No. 5, pp. 866-871, (1990)
- (7) 森本・畠中・童・武田・平紗:「PMモータの弱め磁束制御を用いた 広範囲可変速運転」電学論 D, Vol. 112, No. 3, pp. 292-298, (1992)
- (8) J. A. Tapia, F. Leonardi, T. Lipo: "Consequent-Pole Permanent Magnet Machine with Field Weakening Capability", Proc. of IEMDC 2001, pp. 126-131, (2001)
- (9) 宮本・Katteden Kamiev・小林・横井・樋口:「コンシクエントポール
 型 PM の設計法に関する一考察」電気学会研究会資料,回転機研究
 会, RM-18-112, pp. 35-38 (2018)
- (10) T. Ogawa, T. Takahashi, M. Takemoto, S. Ogasawara, H. Arita, and A. Daikoku: "Increasing the Operating Speed of a Consequent Pole Axial Gap Motor for Higher Output Power Density,"IEEJ Journal of Industry Applications, Vol. 8, No. 3, pp. 497-504, (2019)

図 12 零相巻線の無負荷誘起電圧波形と FFT 解析結果 Fig. 12. Zero-phase back e.m.f. waveform and FFT analysis result of proposed motor with zero-phase winding.

図 13 三相+零相駆動と三相駆動でのトルク波形と FFT 解析結果

Fig. 13. Torque waveforms and FFT analysis results between three-phase and three-phase plus zero-phase.