零相回路を用いた複合起磁力モータの トルクブーストに関する検討

村上和寛*,野口季彦(静岡大学),服部晃尚,金子陽一(株式会社デンソー)

Study on Torque Boost of Compound Magnetomotive Force Motor Using Zero-Phase Circuit Kazuhiro Murakami, Toshihiko Noguchi (Shizuoka University) Akihisa Hattori, Yoichi Kaneko (DENSO CORPORATION)

1. はじめに

近年, PM モータの可変速運転領域の拡大を目指した研究 が精力的に行われている。PM モータの多くはエネルギー密 度が高いネオジム磁石を使用して誘起電圧定数を高めるこ とにより,低速運転域で大きなトルクを出力するように設 計できる。しかし,低速運転域で大トルクを出力できる PM モータは高速運転が非常に困難であり,低速運転域での大 トルクと高速運転の両立による可変速運転領域の拡大はト レードオフの関係にある。筆者らは高速運転域の拡大を PM モータの構造からアプローチし,低速運転域におけるトル クの増大を駆動方法から改善することを目指してきた。そ の一つとして, PM モータのロータ構造を1極対毎にイメー ジポールを形成することにより,高速運転域の拡大を実現 する新しいコンシクエントポールモータを検討してきた⁽⁰⁾。

本稿では、上記検討を踏まえて、三相電流と零相電流を 用いて駆動することで低速運転域においてトルクをブース トする手法について検討したので報告する。

2. 原理モータの概要

Fig.1に原理モータモデルのステータ巻線構造を示す。原 理モータの基本構造は8極相当(磁石磁極:4極,イメージ ポール:4極)12スロットである。ロータはN極とS極の 1極対毎にイメージポールを形成する構造とし、同相のイメ ージポールに対向する巻線と磁石に対向する巻線は直列接 続とする。したがって、ロータコアの磁気回路は不平衡で あるが,各相のインダクタンスはバランスする。このため、 不平衡なロータ起磁力によるモータ電流制御への悪影響は ない。原理モータは従来のPMモータに比べ磁石量を半分 としているため磁石磁束が少なく、ロータの磁気回路は鉄 が占める割合が多いので、インダクタンスが大きくなる。 よって、原理モータの可変速運転特性は低速運転域ではト ルクが小さくなるが、弱め界磁を行う高速運転域の拡大を 期待することができる。

3. 提案モータと動作原理

従来の PM モータの磁石起磁力は電機子の回転磁界と同 期する成分により占められ、その他の高次成分は僅かであ る。しかし、原理モータは N 極と S 極の 1 極対毎にイメー

図 2 提案モータモデル Fig. 2. Proposed motor model.

ジポールを形成することにより、ロータの磁石起磁力が電 機子の回転磁界と同期する 8 極成分だけでなく、低次磁石 起磁力である 4 極成分ももつ。そこで,原理モータの駆動 方法として、低速運転域で三相と零相を用いることにより、 1台のインバータで8極成分と4極成分の磁石起磁力に同期 させ,その結果として,低速運転域でのトルクブーストを 実現する手法を検討する。Fig.2に提案モータモデルのステ ータ巻線構造を示す。提案モータは同一ティースに三相巻 線と単相巻線を設けた二重巻線構造をもつ。三相巻線によ る回転磁界は磁石起磁力の8極成分,零相巻線による交番 磁界は4極成分と同期させる。Fig.3に提案モータの駆動回 路を示す。三相交流に同相の交流成分(零相成分)を重畳 することで、零相巻線により4極の交番磁界を発生させる。 以上のように, 原理モータを複合起磁力モータと捉え, 駆 動方法を三相のみから三相と零相にて駆動することで、イ ンバータの台数を増加させることなく低速運転域でのトル クブーストを実現することができる。

4. シミュレーション結果

電磁界解析ソフト JMAG-Designer 17.0[™]を用いて,原理 モータと提案モータの運転特性を解析した。

<4・1>原理モータの特性比較

原理モータと従来の SPM モータの N-T 特性を比較する。 ベンチマークである SPM モータは原理モータのステータと 共通でエアギャップも同一としている。差異として,原理 モータは 8 極相当(磁石磁極:4 極,イメージポール:4 極) であるが,SPM モータは 8 極全てを磁石とするため磁石体 積は倍である。Fig.4 に最大出力運転時の N-T 特性を示す。 直流バス電圧は12 V とし,各相の起磁力は1306 AT である。 原理モータと SPM モータ共に突極比は1である。原理モー タは SPM モータに比べ磁石磁束が少ないことから低速運転 域でのトルクが50%まで減少する。しかし,電圧飽和に達 して弱め界磁を行うと高速運転域が大幅に拡大されること を確認できる。

<4・2>原理モータの磁石起磁力

Fig. 5 に原理モータのロータ表面磁束密度分布と FFT 解 析結果を示す。ロータ構造を8極(磁石磁極:4極,イメー ジポール:4極)とすることで,磁石起磁力に8極成分と4 極成分が含まれていることを確認できる。

<4・3>トルクブーストの検証

三相と零相回路を用いた提案モータにて三相巻線による 回転磁界は8極成分に同期させ、零相巻線による交番磁界 は4極成分に同期させる。解析条件として、三相巻線各相 の起磁力は1306 AT,零相巻線の起磁力は640 AT とした。 解析では電流源を用いて三相巻線各相に電流振幅が1/3の 同相方形波電流を重畳し零相巻線に通電する。Fig.6に三相 +零相回路と三相回路のみで提案モータを駆動した場合の トルク波形とFFT 解析結果を示す。零相は単相駆動である

図4 原理モータとSPMモータのN-T特性比較

Fig. 4. Comparison of N-T Characteristics between principle and SPM motor models.

Fig. 5. Rotor surface flux density and FFT analysis result.

図 6 三相+零相と三相駆動時のトルク波形と FFT 解析結果 Fig. 6. Torque waveforms and FFT analysis results between three-phase and three-phase plus zero-phase.

ためトルクリプルが大きいが三相と零相で駆動することに より平均トルクがブーストされることを確認できた。

5. まとめ

本稿では,複合起磁力をもつ原理モータを三相と零相回 路を用いて駆動することにより,平均トルクをブーストで きることを確認した。今後は,零相巻線に生じる誘起電圧 が高速運転域における出力特性の拡大に影響するので,回 路動作にて零相巻線に生じる誘起電圧を抑制する手法につ いて検討する。

文 献

- 村上・野口・青山:「新規コンシクエントポールモータの 提案と数学モデルの基礎検討」H30 電学東海大(2018)
- (2) 土方・茂田・刈谷・赤津・加藤:「二巻線方式を用いた複 合起磁力モータに関する検討」電学論 D, Vol. 133, No. 10, pp. 986-994 (2013)