

杉浦 功真* 野口 季彦 (静岡大学)

Study on Aspect Ratio and Number of Pole Pairs of High-Power-Rate PM Motors Sugiura Koma^{*}, Toshihiko Noguchi (Shizuoka University)

1. はじめに

近年,永久磁石 (PM)の性能向上に伴いサーボモータの 高性能化が著しく進んでいる。サーボモータに求められる 性能のひとつにパワーレートがある。パワーレートはトル クの2乗をロータイナーシャで割った値であり,加速度性 能を表す指標である。高パワーレートであるほど,モータの 加速度は大きい。ここで,トルクは同体積なら,外径を大き くするほうが高トルクを実現できるが,イナーシャはロー タ外径の4乗に比例する。したがって,同体積であれば,ロ ータ径が細く,積厚方向に長いモータがイナーシャを低減 することができ,高パワーレートに適すると考えられる。し かし,エアギャップ,ブリッジには設計上の制約があるた め,細長い形状にすることで背反が生じると考えられる。

また、トルクは極対数に比例する。したがって、極対数を 増やすことで、高トルク化でき、高パワーレート化すると考 えられる。一方で、モータを製造するうえで、巻線を挿入す る必要があるため、スロットオープニングの幅は制約を受 ける。このとき、極対数が多い場合にはスロットオープニン グの割合が高くなるなどのトレードオフが生じると考えら れる。

そこで、本稿では高パワーレートモータに適した積圧と モータ外径のアスペクト比と極対数について検討したので 報告する。

2. アスペクト比に関する検討

ステータ外径 D₁ と積厚 L のアスペクト比 k を下式で定義 する。

$$k = \frac{D_1}{L} \tag{1}$$

本節ではこの k を変化させることによるパワーレートへの 影響について検討する。Fig.1に4極対基本モデルを示す。 本モデルは電気学会Dモデルを参考に作成した。また,kを 変化させる場合にも,エアギャップ,ブリッジ,スロットオ ープニングは一定とした。ここで,イナーシャJは下式で表 される。

Fig. 1. Cross section of 4-pole-pair basic model.

Table 1. Major specifications of motor.

ruble 1. Major specifications of motor.			
	Symbol	Model 1	Model 2
Aspect ratio	k	3.53	4.94
Inner diameter of rotor (mm)	D_3	ϕ 60	ϕ 67
Outer diameter of rotor (mm)	D_2	φ 132.4	φ 148.1
Inner diameter of stator (mm)	-	φ 133.4	φ 149.1
Outer diameter of stator (mm)	D_1	φ 212	φ 237
Stack length (mm)	L	60	48
Magnet width (mm)	-	27.5	30.8
Magnet thickness (mm)	-	4	4.47
Air gap (mm)	-	0.5	\leftarrow
Number of slots	-	48	\leftarrow
Number of turns	-	18	\leftarrow
Line current (A _{amp})	-	27.51	34.39
Area of slot (mm ²)	-	123.74	156.07
Volume of copper (mm ³)	-	3.56×10 ⁵	3.60×10 ⁵
Volume of magnet (mm ³)	-	52800	52800
Volume of motor (mm ³)	-	1.95×10 ⁶	1.95×10 ⁶

(a) Model 1 (k = 3.53). (b) Model 2 (k = 4.94). Fig. 2. 3D models of investigated motors.

Fig. 3. Relationship between power rate and *k*.

$$J = \frac{\pi}{32} \rho \cdot L \cdot \left(D_2^{\ 4} - D_3^{\ 4} \right)$$
(2)

ただし,密度ρ,ロータ外径 D₂,ロータ内径 D₃とする。また,パワーレートは下式で表される。

$$\frac{dP}{dt} = \frac{T^2}{J \times 10^{-3}} \tag{3}$$

(2), (3)式よりパワーレートはロータ外径と積圧, トルクに 依存する。Table 1, Fig. 2 に k = 3.53, k = 4.94 におけるモ ータの主要諸元および, 3D モデルを示す。このとき, Table 1 に示すように, モータ体積, 磁石, 銅の量が等しくなるよ うに設計を行った。モータ外径と積圧のアスペクト比を変 化させたとき, スロット面積も変化する。そこで,全てのモ デルで電流密度が等しくなるよう,アスペクト比に合わせ て電流値を変化させた。電磁界解析には JMAG-Designer 21.0 を使用した。Fig. 3 にアスペクト比 k とパワーレートの関係 を示す。Fig. 3 より k = 4.94 のとき,パワーレートが最も大 きくなることがわかる。これより,高パワーレート化するた めに,最適なアスペクト比が存在することがわかる。

3. 極対数に関する検討

IPM モータのトルクは下式で表される。

$$T = P_n \left\{ \Psi_a i_q + \left(L_d - L_q \right) i_d i_q \right\}$$
⁽⁴⁾

したがって、トルクは極対数 Pnに比例するので極対数が増 加することで、大トルク化し、高パワーレート化すると考え られる。一方で、スロット数が増加するため、ロータとステ ータの表面積が減少する。また,高パワーレート化するため に、イナーシャを低下させる手法として、ロータ内径 D3を 拡大し,中空構造にする方法がある。そこで,前節で求めた, 最適なアスペクト比 k = 4.94 を用いて、2 極対、6 極対のモ デルを作成した。その後, ロータ内径を拡大し, 中空構造化 する効果を検討する。Table2に解析条件, Fig.4に各極対数 における,内径を拡大していないモデルと内径を拡大し,パ ワーレートが最大となるモデルの無負荷時の磁束密度のべ クトルプロットを示す。Fig.4より極対数が増加すると、ロ ータの内径側の磁束密度が低下していることが分かる。Fig. 5に各極対数において、内径を拡大した場合のパワーレート の変化を示す。Fig.5より4極対において、パワーレートが 最も高くなっていること、ロータ内径を拡大することで、パ ワーレートが向上することが分かる。また,極対数が多くな るとパワーレートが最大となるロータ内径が大きくなるこ とがわかる。これは極対数が増加するとロータの内径側の 磁束密度が低下しており, q 軸磁路としての役割を果たして いないためであると考えられる。

4. まとめ

本稿では,高パワーレート PM モータに適切な積圧とモ ータ径のアスペクト比と極対数について検討した。解析結

(e) $P_n = 6$, $D_3 = 67.1$ mm. (f) $P_n = 6$, $D_3 = 101$ mm. Fig. 4. Analysis results of magnetic flux density.

Fig. 5. Power rate with respect to D_2 .

果から,モータの体積が等しい場合には,パワーレートが最 大となるアスペクト比と極対数が存在することを確認し た。また,ロータ内径を拡大し,中空ロータ構造を用いるこ とで,パワーレートが向上することを確認した。最適なアス ペクト比,極対数はモータジオメトリに応じて変化すると 考えらえる。したがって,ジオメトリに応じた最適なアスペ クト比と極対数を検討することはモータの高パワーレート 化に有効であると言える。

献

文

- (1) 筒井 幸雄:「ロボット用電動機の開発動向」,電気学会誌, Vol.126, No.11 p.735-737 (2006)
- (2) 橘 英之, 真田 雅之, 森本 茂雄, 井上 征則:「高電流密 度時の PM モータにおける外径と積厚の比がトルクに及ぼす影響の 検討」,パワーエレクトロニクス学会誌, Vol.37, p.228 (2012)