透磁率変調に基づく可変界磁 PM モータ を駆動する拡張空間ベクトル変調

山田 幹太*, 岩間 清大, 野口 季彦 (静岡大学)

Extended Space Vector Modulation Feeding Adjustable Field PM Motor Based on Permeability Modulation Kanta Yamada*, Kiyohiro Iwama, Toshihiko Noguchi (Shizuoka University)

1. はじめに

筆者らは運転領域の拡大を目的に 0 軸電流 i_0 を利用して 永久磁石 (PM) 磁束を制御する可変界磁 PM モータと空間 ベクトル変調 (SVM) を組み合わせたモータドライブを提 案してきた⁽¹⁾⁻⁽³⁾。本稿では、シングルインバータドライブに おける従来の $\alpha\beta$ 軸で確立された SVM 法を 0 軸も加味した 三次元に拡張し、実機検証を通して提案法の妥当性を確認 したので報告する。

2. 透磁率変調に基づく可変界磁 PM モータの諸元

Fig.1に提案する透磁率変調に基づく可変界磁 PM モータ のモデル, Table 1 に主要諸元を示す。同図より試作機はス テータコアおよびロータコアが2つに分割されており,分 割されたステータコア間に変調巻線が挿入されている。こ の変調巻線に変調電流 i_m (= $\sqrt{3}i_0$)を供給することで、ステ ータフレームおよびロータシャフトを利用した三次元磁路 を透過する変調磁束を生成できる。imを供給しないとき,磁 極間に設けた漏れ磁路の透磁率が高いため、多くの PM 磁 束はロータ内で短絡する。ここに im を供給すると、変調磁 束による磁気飽和で漏れ磁路の透磁率が低下するため、多 くの PM 磁束はステータに鎖交する。以上のように、提案 する可変界磁手法では, ioを調整することで, 磁極間漏れ磁 路の透磁率を変調し、ステータに鎖交する界磁量 ¥fを制御 することができる。Fig. 2 に実機を用いた Ψf(io)と ioの関係 を示す。同図より Ψf(i0)は i0 の絶対値に依存しており,以下 のように近似することができる。

 $\Psi_{f}(i_{0}) = -3.76 \times 10^{-6} i_{0}^{4} + 5.87 \times 10^{-4} i_{0}^{2} + 2.45 \times 10^{-2}$ (1)

3. 拡張空間ベクトル変調の原理

Table 2 に下式で与えられるシングルインバータのスイッ チング状態と電圧ベクトルの関係を示す。ただし、 V_{dc} は直 流バス電圧であり、各レグにおいてスイッチングモード が"0"のとき- V_{dc} 2、"1"のとき+ V_{dc} 2の相電圧が出力される。

$$\begin{bmatrix} v_0 \\ v_\alpha \\ v_\beta \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1/2 & -1/2 \\ 0 & \sqrt{3}/2 & -\sqrt{3}/2 \end{bmatrix} \begin{bmatrix} v_u \\ v_v \\ v_w \end{bmatrix}$$
(2)

同表より全てのスイッチング状態で 0 軸電圧は出力されて おり, ioを利用する本モータドライブでは,従来の αβ 軸電

Fig. 1. Prototype motor. Fig. 2. Relationship between Ψ_f and i_0 .

Table 1. Specifications of prototype motor.				
Number of poles and slots	8 poles, 48slots			
Armature winding and resistance	6 turns/slot, 0.085 Ω			
Modulation winding and resistance	140 turns, 2.1 Ω			
Stator diameter	φ 148 mm			
Rotor diameter	φ 96.6 mm			
Stack length	63 mm			

 Table 2.
 Relationship between switching states and voltage vectors.

Switting state		state	Voltage vector			
U	V	W	0-axis component	α -axis component	β -axis component	
0	0	0	$-\sqrt{3}V_{dc} / 2$	0	0	
0	0	1	$-V_{dc} / 2\sqrt{3}$	$-V_{dc}/\sqrt{6}$	$-V_{dc}/\sqrt{2}$	
0	1	0	$-V_{dc} / 2\sqrt{3}$	$-V_{dc} / \sqrt{6}$	$+V_{dc} / \sqrt{2}$	
0	1	1	$+V_{dc} / 2\sqrt{3}$	$-\sqrt{2}V_{dc}/\sqrt{3}$	0	
1	0	0	$-V_{dc} / 2\sqrt{3}$	$+\sqrt{2}V_{dc}/\sqrt{3}$	0	
1	0	1	$+V_{dc} / 2\sqrt{3}$	$+V_{dc} / \sqrt{6}$	$-V_{dc}/\sqrt{2}$	
1	1	0	$+V_{dc} / 2\sqrt{3}$	$+V_{dc} / \sqrt{6}$	$+V_{dc} / \sqrt{2}$	
1	1	1	$+\sqrt{3}V_{dc}/2$	0	0	

圧ベクトルに加えて 0 軸電圧も考慮した出力時間の計算を

行う必要がある。Fig. 3 に $0\alpha\beta$ 軸電圧指令ベクトル v^* の出力 原理を示す。同図の $\alpha\beta$ 平面より電圧ベクトル V_0 と V_7 は α 成分、 β 成分をもたないことがわかる。よって、 V_4 、 V_6 の出 力時間 T_4 、 T_6 は正弦定理を用いて下式で表される。ただし、 T_8 は SVM 制御周期である。

$$T_4 = \sqrt{2} v_{\alpha\beta}^* \sin\left(\pi / 3 - \theta\right) T_s / V_{dc}$$
(3)

$$T_6 = \sqrt{2} v_{\alpha\beta}^* \sin(\theta) T_s / V_{dc} \tag{4}$$

また、 0α 平面および 0β 平面より下式の関係が成り立つ。 $T_0 + T_4 + T_6 + T_7 = T_s$ (5)

$$(T_7 - T_0) \times \frac{\sqrt{3}}{2} V_{dc} / T_s + (T_6 - T_4) \times \frac{1}{2\sqrt{3}} V_{dc} / T_s = v_0^*$$
 (6)

ここで, $T_{z} = 2v_{0}^{*}T_{s} / (\sqrt{3}V_{dc})$ とすると, (5), (6)より V_{0} , V_{7} の出力時間 T_{0} , T_{7} は下式で表される。

$$T_0 = \left(3T_s - 4T_4 - 2T_6 - 3T_z\right)/6 \tag{7}$$

$$T_7 = \left(3T_s - 2T_4 - 4T_6 + 3T_z\right) / 6 \tag{8}$$

上式の出力時間に応じて各電圧ベクトルを選択すること で指令値通りの電圧ベクトルを出力することができる。

4. 実機検証結果

Table 3 に実験条件, Fig. 4 に制御ブロック図を示す。同図 より本実験では Fig. 1 の可変界磁 PM モータを 5 kVA のイ ンバータ1台で制御する。また,0軸制御器には状態変数フ ィルタ, Ψf(io)と ioの関係には(1)を用いている。Fig. 5 に拡 張 SVM 法(提案法)を適用したときの電流波形の実験結果 を示す。同図より指令値通りに各軸電流を制御できており, 提案法の妥当性が確認できる。Fig.6に各変調方式での0軸 電流のフーリエ解析結果を示す。ここでは,0軸電圧の出力 時に Voと V7のみを使用する SVM 法(従来法)およびサブ ハーモニック変調との比較を行う。同図より提案法を適用 することで従来法よりも高調波成分を低減でき、サブハー モニック変調と同程度のひずみ率を実現できることがわか る。特に, α成分, β成分をもつ電圧ベクトルの選択時に出 力される 0 軸電圧の 3 次周波数成分では 55.9 %の低減を確 認できる。よって、提案法はサブハーモニック変調よりも 15.5%の電圧利用率向上と従来のSVM法よりもioの高調波 成分低減を同時に実現しており,ioを用いた可変界磁PM モ ータに適した提案法の優位性が明らかとなった。

5. まとめ

本稿ではシングルインバータドライブにおける **0***a*β 軸 の三次元に拡張した空間ベクトル変調法を提案した。実機 検証を通して指令値通りの電流制御が可能である提案法 の妥当性,さらに電圧利用率の向上と *io* の高調波成分の 低減を実現できる優位性を確認した。今後は、デュアルイ ンバータドライブにおける **0***a*β 軸に拡張した空間ベクト ル変調法を検討し、実機検証により妥当性を確認していく 所存である。

Table 3.	Experimental	conditions
14010 01	Liperinententen	• on an one

Switching frequency	10 kHz
Dead time	4 μs
Crossover frequency of current control	1000 rad/s
Rotating speed	3000 r/min
0-axis current command	2 A
d-axis current command	0 A
q-axis current command	20 A

Fig. 5. Experimental results of current waveforms.

Fig.6. FFT results of 0-axis current in each modulation method.

文 献

(2) 山田・野口:モータドライブ/家電・民生合同研究会,(2022)
(3) 山田・野口:東海支部連合大会,(2022)

2023/3/15~17 名古屋

⁽¹⁾ K. Iwama and T. Noguchi, *IEEE Trans. on Ind. Electron.*, vol. 70, no. 2, pp. 1239-1249 (2023)